PCOS

Polycystic ovary syndrome (PCOS) is the commonest cause of infertility, characterised by excessive ovarian activity, yet non-development of healthy ova. Recent studies have clearly established its association with insulin resistance and other manifestations of metabolic syndrome, such as obesity, NAFLD, impaired glucose tolerance etc. Dietary restrictions can help in reversing PCOS within a few weeks.

Possible pathophysiological mechanisms of polycystic ovary syndrome [See]

Rocha AL, Oliveira FR, Azevedo RC et al. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research 2019;8(F1000 Faculty Rev):565 https://doi.org/10.12688/f1000research.15318.1 Available at https://f1000research.com/articles/8-565

Spinedi E, Cardinali DP. The Polycystic Ovary Syndrome and the Metabolic Syndrome: A Possible Chronobiotic-Cytoprotective Adjuvant Therapy. International Journal of Endocrinology. 2018, Article ID 1349868, 12 pages, 2018. https://doi.org/10.1155/2018/1349868. Available at https://www.hindawi.com/journals/ije/2018/1349868/

Shi B, Feng D, Sagnelli M et al. Fructose levels are elevated in women with polycystic ovary syndrome with obesity and hyperinsulinemia. Human Reproduction. January 2020;35(1):187–194. https://doi.org/10.1093/humrep/dez239

Mavropoulos JC, Yancy WS, Hepburn J, Westman EC. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab (Lond). 2005;2:35. Published 2005 Dec 16. doi:10.1186/1743-7075-2-35. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334192/

Zhang X, Zheng Y, Guo Y, Lai Z. The Effect of Low Carbohydrate Diet on Polycystic Ovary Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int J Endocrinol. 2019;2019:4386401. Published 2019 Nov 26. doi:10.1155/2019/4386401. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899277/

NAFLD

Non alcoholic fatty liver disease (NAFLD) is today the most common cause of chronic liver disease, causing steatohepatitis, cirrhosis, hepatic failure and hepatocellular carcinoma. Newer insights into the issue have revealed a  simple truth that it’s the sugars, fruits and grains that are the source of every alcoholic beverage and the actions and metabolism of these sugars, particularly of fructose, have several similarities with those of alcohol. Therefore, prevention and management of NAFLD have got lot to do with restriction of these dietary factors.

Toxic Truth of Sugar: Source

Fructose and nonalcoholic fatty liver disease (NAFLD): the multifaceted aspects of fructose metabolism. [See]

The Toxic Truth: Too much fructose can damage your liver, just like too much alcohol [See]

Sugar is Toxic: The growing scientific evidence, both epidemiological and mechanistic, very clearly shows that excess sugar induces all of the diseases associated with the metabolic syndrome, Robert H. Lustig et al write in Nature. See Lustig RH, Schmidt LA, Brindis CD. Public health: The toxic truth about sugar. Nature. 02 February 2012;482:27–29. doi:10.1038/482027a[Link][Report | Report | Report | Report]

Lim J, Mietus-Snyder M, Valente A et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 2010;7:251–264. https://doi.org/10.1038/nrgastro.2010.41

Jegatheesan P, Bandt J-PD. Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients 2017;9(3):230. https://doi.org/10.3390/nu9030230. Available at https://www.mdpi.com/2072-6643/9/3/230/htm

Zhang D-M, Jiao R-Q, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017;9(4):335. https://doi.org/10.3390/nu9040335 Available at https://www.mdpi.com/2072-6643/9/4/335/htm

Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. June 2013;57(6):2525-2531. https://doi.org/10.1002/hep.26299. Available at https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.26299

Duarte S, Stefano JT,  Vanni D, Carrilho F, Oliveira C. Impact of current diet at the risk of non-alcoholic fatty liver disease (NAFLD). Arquivos de Gastroenterologia. 2019;56.  DO – 10.1590/s0004-2803.201900000-67. Available at https://www.researchgate.net/publication/337087437_Impact_of_current_diet_at_the_risk_of_non-alcoholic_fatty_liver_disease_NAFLD/fulltext/5dc9088f299bf1a47b2cc3ed/Impact-of-current-diet-at-the-risk-of-non-alcoholic-fatty-liver-disease-NAFLD.pdf

Prussick RB,  Miele L. Nonalcoholic fatty liver disease in patients with psoriasis: a consequence of systemic inflammatory burden? Br J Dermat. July 2018;179(1):16-29. https://doi.org/10.1111/bjd.16239. Available at https://onlinelibrary.wiley.com/doi/full/10.1111/bjd.16239

Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Reports. October 2019;1(4):312-328. Available at https://www.sciencedirect.com/science/article/pii/S2589555919300795

Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection. 2013;19(4):338-348. https://doi.org/10.1111/1469-0691.12140. Available at https://www.sciencedirect.com/science/article/pii/S1198743X14609800

Mann JP et al. Nonalcoholic Fatty Liver Disease in Children. Semin Liver Dis 2018;38:1–13. Available at https://air.unimi.it/retrieve/handle/2434/606450/1395045/s-0038-1627456.pdf

Duwaerts CC, Maher JJ. Macronutrients and the Adipose-Liver Axis in Obesity and Fatty Liver. Cellular and Molecular Gastroenterology and Hepatology2019;7(4):749-761. Available at https://www.cmghjournal.org/article/S2352-345X(19)30009-8/fulltext

Taskinen M-R, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019;11(9):1987. https://doi.org/10.3390/nu11091987. Available at https://www.mdpi.com/2072-6643/11/9/1987/htm

Akhtar DH, Iqbal U, Vazquez-Montesino LM, Dennis BB, Ahmed A. Pathogenesis of Insulin Resistance and Atherogenic Dyslipidemia in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2019;7(4):362. doi: 10.14218/JCTH.2019.00028. Available at https://www.xiahepublishing.com/2310-8819/ArticleFullText.aspx?sid=2&id=10.14218%2FJCTH.2019.00028

Chen Q, Wang T, Li J et al. Effects of Natural Products on Fructose-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Nutrients 2017;9:96.Available at https://www.mdpi.com/2072-6643/9/2/96

Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr 2020;12:60. https://doi.org/10.1186/s13098-020-00570-y. Available at https://dmsjournal.biomedcentral.com/articles/10.1186/s13098-020-00570-y

El-Agroudy NN et al. Are Lifestyle Therapies Effective for NAFLD Treatment? Trends in Endocrinology & Metabolism 2019;30(10):701-709. Available at https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(19)30136-5

Lambertz J, Weiskirchen S, Landert S,  Weiskirchen R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front. Immunol., 19 September 2017. https://doi.org/10.3389/fimmu.2017.01159. Available at https://www.frontiersin.org/articles/10.3389/fimmu.2017.01159/full

High Uric Acid

Elevation of blood Uric acid levels is now considered as the key to the development of metabolic syndrome, particularly cardiovascular disease, hypertension and inflammatory status. In recent years, it is becoming clearer that elevation of uric acid is linked to the consumption of fructose in various food types, and therefore, dietary restriction plays a very important role in regulating serum uric acid and the problems associated with its elevation.

Relationship between high-fructose diet, generation of hyperuricemia and resulting metabolic syndrome [See]
Complex interaction of uric acid, components of metabolic syndrome and cardiovascular disease [See]

Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, Lanaspa MA, Nakagawa T, Johnson RJ. Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med. 2016 Apr;29:3-8. doi: 10.1016/j.ejim.2015.11.026.Available at https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/26703429/

Fructose Worsens Gout: Consumption of soft drinks sweetened with sugar and fructose is strongly associated with an increased risk for gout, according to the results of a prospective cohort study reported in the February 1 Online First issue of the BMJ. This was a 12-year follow-up study of 46,393 health professionals without a previous history of gout and the goal was to assess the relationship between consumption of sugar-sweetened soft drinks and fructose and the risk for incident gout. See Sweet Soft Drinks, Fructose Linked to Increased Risk for Gout. Available at http://www.medscape.com/viewarticle/569656

Raina S, Raina RK, Raina SK. Hyperuricemia: A risk factor beyond gout. J Obes Metab Res 2015;2:228-33. Available from: https://www.jomrjournal.org/text.asp?2015/2/4/228/170903

Jamnik J, Rehman S, Blanco Mejia S, et al. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open. 2016;6(10):e013191. Published 2016 Oct 3. doi:10.1136/bmjopen-2016-013191. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073537/

Lecoultre V, Egli L, Theytaz F, Despland C, Schneiter P, Tappy L. Fructose-induced hyperuricemia is associated with a decreased renal uric acid excretion in humans. Diabetes Care. 2013;36(9):e149-e150. doi:10.2337/dc13-0866. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747900/

Sayehmiri K, Ahmadi I, Anvari E. Fructose Feeding and Hyperuricemia: a Systematic Review and Meta-Analysis. Clinical Nutrition Research. April 2020;9(2):122. DOI: 10.7762/cnr.2020.9.2.122 Available at https://www.researchgate.net/publication/341024202_Fructose_Feeding_and_Hyperuricemia_a_Systematic_Review_and_Meta-Analysis/fulltext/5ea97cff299bf18b9584ac4e/Fructose-Feeding-and-Hyperuricemia-a-Systematic-Review-and-Meta-Analysis.pdf

Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology-Renal Physiology. 2006;290(3):F625-F631. Available at https://journals.physiology.org/doi/abs/10.1152/ajprenal.00140.2005

Food and Brain

Increase in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, and in several psychiatric disorders in recent years are in correlation with the drastic changes in food and lifestyle being witnessed in the last few decades. Several reports now indicate a possible link between the modern diet and these neurological and psychiatric disorders.

Potential causal mechanisms linking increased fructose intake with an increased risk of dementia [See]

Lakhan SE, Kirchgessner A. The emerging role of dietary fructose in obesity and cognitive decline. Nutr J 2013;12:114. https://doi.org/10.1186/1475-2891-12-114. Available at https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-12-114

Stephan BCM, Wells JCK, Brayne C, Albanese E, Siervo M. Increased Fructose Intake as a Risk Factor For Dementia. Available at https://watermark.silverchair.com/glq079.pdf

Diet is linked to mental health: Jacka FN, Kremer PJ, Berk M, de Silva-Sanigorski AM, Moodie M, et al. A Prospective Study of Diet Quality and Mental Health in Adolescents. PLoS ONE 2011;6(9):e24805. doi:10.1371/journal.pone.0024805 [Full Text] | Felice N. Jacka et al. The Association Between Habitual Diet Quality and the Common Mental Disorders in Community-Dwelling Adults: The Hordaland Health Study
Psychosomatic Medicine July 2011;73(6):483-490 [Abstract]

Diet and Obesity May be Linked to Alzheimer’s: A Swedish study that included 8,534 twins over the age of 65, has found that the risk of dementia was almost double in those who were overweight versus those of normal weight and those who were obese had almost a fourfold increase in risk. [Johansson K at al. Longer term effects of very low energy diet on obstructive sleep apnoea in cohort derived from randomised controlled trial: prospective observational follow-up study BMJ 2011; 342:d3017  Abstract | Report | Older Paper]

Metabolic Syndrome Increases Age Related Memory Loss: A French study reports that several components of metabolic syndrome may be associated with age related cognitive decline [Abstract – Neurology February 8, 2011 vol. 76 no. 6 518-525]

Exclusive Breastfeeding helps to Boost IQ, has Favourable Effects on Height, Weight and Blood Pressure: Largest Prospective Study Finds Breastfeeding and Child Cognitive Development: New Evidence From a Large Randomized Trial; Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: evidence from a large randomized trial; Effects of Prolonged and Exclusive Breastfeeding on Child Behavior and Maternal Adjustment: Evidence From a Large, Randomized Trial; Reports 1; 2; 3

Processed Food Diet in Early Childhood may Lower IQ: The Avon Longitudinal Study of Parents and Children, which tracks the long term health and wellbeing of around 14,000 children born in 1991 and 1992, has found that a predominantly processed food diet at the age of 3 was associated with a lower IQ at the age of 8.5, whereas a healthy diet was associated with a higher IQ at the age of 8.5. Press Release | Report]

ADHD is Associated With a ‘Western’ Dietary Pattern in Adolescents, Australian Study Finds The study involving 1,799 adolescents on 14-year follow-up has found that a diet high in the Western pattern of foods was associated with more than double the risk of having an ADHD diagnosis compared with a diet low in the Western pattern, after adjusting for numerous other social and family influences [Howard AL et al. ADHD Is Associated With a ‘Western’ Dietary Pattern in Adolescents. Journal of Attention Disorders, 2010; DOI: 10.1177/1087054710365990. Abstract | Report]

Glucose increases and fructose reduces brain activity: A functional brain magnetic resonance imaging (fMRI) study at Oregon Health and Science University has found that infusion of glucose enhances brain cortical activity but fructose infusion has the opposite effect, with reduced activity. While bigger studies are needed to confirm the findings, this may be one of the clues for patterns of our behaviour in general, and food consumption in particular. [Abstract from Purnell JQ et al. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans Diabetes, Obesity and Metabolism March 2011;13(3):229–234. | Report]

Eating nuts may enhance mood: [See]

Fish Oil May Reduce Psychosis in High-Risk Individuals
G. Paul Amminger et al., Arch Gen Psychiatry February 2010 | Report

Mediterranean Diet May Have a Protective Role Against Depression Abstract of Sánchez-Villegas A et al., Arch Gen Psychiatry

Low-Glycemic-Index Diet Appears to Modulate Alzheimer’s Biomarker: A 4-week diet intervention study has found that healthy cognitively intact older adults who stuck to a low-saturated-fat, low-glycemic-index diet experienced decreases in cerebrospinal fluid (CSF) levels of β-amyloid 42, a biomarker of Alzheimer’s disease risk. [Bayer-Carter JL at al. Diet Intervention and Cerebrospinal Fluid Biomarkers in Amnestic Mild Cognitive Impairment. Arch Neurol. 2011;68(6):743-752. doi:10.1001/archneurol.2011.125 | Report]

Berries may prevent Alzheimer’s disease: Eating blueberries, blackberries, strawberries may prevent cognitive decline, study finds. Miller MG, Shukitt-Hale B. Berry Fruit Enhances Beneficial Signaling in the Brain. J. Agric. Food Chem. DOI: 10.1021/jf2036033. [Abstract | Report]

Hypertension

Hypertension, termed as ‘essential’ in the literature, is increasing in prevalence and affecting more and more of younger population. Traditionally blamed on high consumption of slats, hypertension is increasingly being seen as a part of metabolic syndrome, associated with hyperuricemia, driven by modern day diet that is rich in sugars such as fructose.

Hypertensive mechanisms of fructose [See]

DiNicolantonio JJ, Lucan SC.The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 2014;1:e000167. doi: 10.1136/openhrt-2014-000167. Available at https://openheart.bmj.com/content/1/1/e000167

Rosset R, Surowska A, Tappy L. Pathogenesis of Cardiovascular and Metabolic Diseases: Are Fructose-Containing Sugars More Involved Than Other Dietary Calories?. Curr Hypertens Rep 2016;18:44. https://doi.org/10.1007/s11906-016-0652-7. Available at https://link.springer.com/article/10.1007/s11906-016-0652-7

Sugar Consumption Increases Blood Pressure: The recently published INTERMAP study reveals that soft drinks, sweetened fruit juices, and sugar-loaded sports drinks are associated with significant increases in systolic and diastolic blood pressures. [Abstract from Brown IJ, Stamler J, Van Horn L, et al. Sugar-sweetened beverage, sugar intake of individuals and their blood pressure: INTERMAP study. Hypertension Feb 2011. doi: 10.1161/HYPERTENSIONAHA.110.165456 | Report]

High fructose intake in the form of added sugar is independently associated with higher blood pressure, according to the results of a cross-sectional analysis of data from the National Health and Nutrition Examination Survey [Diana I. Jalal, Gerard Smits, Richard J. Johnson and Michel Chonchol. Increased Fructose Associates with Elevated Blood Pressure. Journal of the American Society of Nephrology. July 1, 2010. doi: 10.1681/ASN.2009111111] [Full text] | Report]

Fructose (Fruits) and High Blood Pressure Abstract of Carlos A. Roncal et al, Am J Nephrol; Reuters Report

Malik VS, Hu FB. Fructose and Cardiometabolic Health. Journal of the American College of Cardiology. 2015;66(14):1615-1624. doi: 10.1016/j.jacc.2015.08.025 Available at https://www.jacc.org/doi/abs/10.1016/j.jacc.2015.08.025

Hieronimus B, Medici V, Bremer AA. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism. November 2020;112:154356. Available at https://www.sciencedirect.com/science/article/pii/S0026049520302201

Zhang D-M, Jiao R-Q, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017;9(4):335. https://doi.org/10.3390/nu9040335 Available at https://www.mdpi.com/2072-6643/9/4/335/htm

Salt a key player in resistant hypertension Abstract in Pimenta E et al., Hypertension, 20 July, 2009; Report

Exclusive Breastfeeding helps to Boost IQ, has Favourable Effects on Height, Weight and Blood Pressure: Largest Prospective Study Finds Breastfeeding and Child Cognitive Development: New Evidence From a Large Randomized Trial; Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: evidence from a large randomized trial; Effects of Prolonged and Exclusive Breastfeeding on Child Behavior and Maternal Adjustment: Evidence From a Large, Randomized Trial; Reports 1; 2; 3

Cut Down Salt Intake: ASH Position Paper – Dietary Approaches to Lower Blood Pressure
Full Text of Lawrence J. Appel, ASH; Medscape Article

Reduction of body fat more important than fitness in lowering blood pressure: Individuals who have a healthy body weight are more likely than those who are physically fit to have lower blood pressure, shows a new study [Chen J, Das S, Barlow CE, Grundy S, Lakoski SG. Fitness, fatness, and systolic blood pressure: data from the Cooper Center Longitudinal Study. Am Heart J. 2010 Jul;160(1):166-70.] [Abstract] | Report]

Cardiovascular Disease

Cardiovascular disease, commonly manifesting as coronary artery disease and heart attacks, cerebrovascular disease and strokes, peripheral vascular disease etc., is considered as a component of metabolic syndrome. Several studies in recent years have shown a clear relationship between consumption of modern foods and development of cardiovascular diseases. Dietary restrictions, therefore, have a very important role to play in the prevention and management of cardiovascular diseases.

Fructose and cardiovascular disease [See]

Rosset R, Surowska A, Tappy L. Pathogenesis of Cardiovascular and Metabolic Diseases: Are Fructose-Containing Sugars More Involved Than Other Dietary Calories?. Curr Hypertens Rep 2016;18:44. https://doi.org/10.1007/s11906-016-0652-7. Available at https://link.springer.com/article/10.1007/s11906-016-0652-7

DiNicolantonio JJ, Lucan SC.The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart 2014;1:e000167. doi: 10.1136/openhrt-2014-000167. Available at https://openheart.bmj.com/content/1/1/e000167

Ancient Egyptians Too Had Atherosclerotic Vascular Disease Abstract of Allam AH et al., JAMA, November 18, 2009;302(19); Medpage Today Report; Phys Org Report

Globalization of Food Patterns and Cardiovascular Disease Risk |
Globalization and the epidemiology of obesity

Dietary Patterns and Risk of Mortality From Cardiovascular Disease, Cancer, and All Causes:
See Mediterranean Diet and Incidence of and Mortality From Coronary Heart Disease and Stroke in Women – Circulation, Feb 2009 | A Prospective Cohort of Women; Circulation, 2008;118:230-237 | Dietary Patterns and the Risk of Acute Myocardial Infarction in 52 Countries

Hieronimus B, Medici V, Bremer AA. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism. November 2020;112:154356. Available at https://www.sciencedirect.com/science/article/pii/S0026049520302201

Malik VS, Hu FB. Fructose and Cardiometabolic Health. Journal of the American College of Cardiology. 2015;66(14):1615-1624. doi: 10.1016/j.jacc.2015.08.025 Available at https://www.jacc.org/doi/abs/10.1016/j.jacc.2015.08.025

Sweetened Beverages Increase Coronary Heart Disease: de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened Beverage Consumption, Incident Coronary Heart Disease and Biomarkers of Risk in Men. CIRCULATIONAHA.111.067017 doi: 10.1161/CIRCULATIONAHA.111.067017. [Full Text]

Increasing the ratio of beans to white rice, or limiting the intake of white rice by substituting beans, may lower cardiometabolic risk factors: A new study from Costa Rica, which involved monitoring the diet of almost 2,000 people in an investigation of risk factors for heart disease between 1994 and 2004, has shown that those who regularly traded a helping of white rice for one of beans experienced a 35 per cent reduction in the risk of symptoms that usually lead to diabetes. [Mattei J, Hu FB, Campos H. A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults. Am J Clin Nutr. 2011 Sep;94(3):869-76. Epub 2011 Aug 3. Abstract | Report]

Increased Sodium Increases Cardiovascular Risk: A new, 15-year follow-up study has shown that people with the highest ratio of sodium to potassium in their diet had a significantly increased risk of death from cardiovascular disease compared with those who had the lowest ratio of sodium to potassium intake [Yang Q et al. Sodium and Potassium Intake and Mortality Among US Adults Prospective Data From the Third National Health and Nutrition Examination Survey Arch Intern Med. 2011;171(13):1183-1191. doi:10.1001/archinternmed.2011.257 Abstract | Commentary | Report]

Projected Effect of Dietary Salt Reductions on Future Cardiovascular Disease: Modest reductions in dietary salt could substantially reduce cardiovascular events and medical costs and should be a public health target. Reducing dietary salt by 3 g per day is projected to reduce the annual number of new cases of CHD by 60,000 to 120,000, stroke by 32,000 to 66,000, and myocardial infarction by 54,000 to 99,000 and to reduce the annual number of deaths from any cause by 44,000 to 92,000 and would save 194,000 to 392,000 quality-adjusted life-years and $10 billion to $24 billion in health care costs annually. Kirsten Bibbins-Domingo et al., Published in N Engl J Med on Jan 20, 2010 [Full Text]

Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies: High salt intake is associated with significantly increased risk of stroke and total cardiovascular disease Full Text of Pasquale Strazzullo et al., BMJ 2009;339:b4567; Report in medpagetoday.com

High calcium intake as supplements may increase cardiovascular mortality [Mark J Bolland et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 29 July 2010;341:c3691. doi:10.1136/bmj.c3691 Full text | Mark J Bolland et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ. 15 January 2008. doi: 10.1136/bmj.39440.525752.BE Full Text]

Calcium Supplements Increase Vascular Events? See

Chronic exposures to Bisphenol A, widely used in epoxy resins lining food and beverage containers, may lead to diabetes and cardiovascular events.
See Full Text Article in JAMA | Report

No association between egg consumption and the incidence of cardiovascular disease: A study that examined the association between egg consumption and incidence of CVD in a prospective dynamic Mediterranean cohort of 14 185 university graduates found no association between egg consumption and the incidence of CVD [Zazpe I et al. Egg consumption and risk of cardiovascular disease in the SUN Project. European Journal of Clinical Nutrition 2011;65:676–682; doi:10.1038/ejcn.2011.30]

Baked fish reduces and fried fish increases the risk of heart failure in post menopausal women: A 10-year follow-up of more than 84 000 postmenopausal women, who participated in the Women’s Health Initiative–Observational Study (WHI-OS), has found that eating baked or broiled dark fish such as salmon five times a week may prevent heart failure in older women, whereas having fried fish only once a week may increase this risk. [Belin RJ, Greenland P, Martin L, et al. Fish intake and the risk of incident heart failure: The Women’s Health Initiative. Circ Heart Fail 2011; DOI:10.1161/CIRCHEARTFAILURE.110.960450. | Report]

Diet Soda and Salt Increase the Risk of Stroke: In a new study from the University of Miami’s Miller School of Medicine (Northern Manhattan Study), those who drink diet soda were found to have more than a 60% increase in stroke than those who abstain and those who used more than 4g of sodiun per day had double the risk than those who had less than 1.5g per day. Report | Report | Report]

Migraine sufferers twice as likely to have a heart attack: Both driven by sugars?
Report in Science Daily | Report in Telegraph

Childhood Obesity Alone May Increase Risk of Later Cardiovascular Disease: Being obese by as early as 7 years of age may raise a child’s risk of future heart disease and stroke, even in the absence of other cardiovascular risk factors such as high blood pressure, according to a new study accepted for publication in The Endocrine Society’s Journal of Clinical Endocrinology & Metabolism (JCEM). Abstract | Report in Science Daily | Report in Modern Medicine

Improved outcomes associated with metformin therapy in patients with diabetes and heart failure: A two year follow-up study has found that metformin use in ambulatory patients with diabetes and heart failure improves outcome, contrary to what was believed. [David Aguilar et al. Metformin Use and Mortality in Ambulatory Patients with Diabetes and Heart Failure CIRCHEARTFAILURE.110.952556 October 15, 2010. doi: 10.1161/​CIRCHEARTFAILURE.110.952556 Abstract | Report]

Almonds may help reduce risk of type 2 diabetes and heart disease: Studyshows that consuming an almond-enriched diet may help improve insulin sensitivity and decrease LDL-cholesterol levels in those with prediabetes. [Michelle Wien et al. Almond Consumption and Cardiovascular Risk Factors in Adults with Prediabetes. Journal of the American College of Nutrition. 2010;29(3):189-197. Abstract | Report]

Increased Potassium Consumption Cuts Cardiovascular Risk by 20%: The largest meta-analysis examining the impact of potassium intake on cardiovascular outcomes has found that higher dietary consumption of potassium is associated with lower rates of stroke and could also reduce the risk of coronary heart disease and total cardiovasular disease. [Abstract from D’Elia L, Barba G, Cappuccio FP, et al. Potassium intake, stroke and cardiovascular disease. A meta-analysis of prospective studies. J Am Coll Cardiol 2011;57:1210-1219. | Report]

Salt Restriction Reduces Cardiovascular Disease Risk
See Report | One More Report | One More..

Fish oil shows beneficial effects in metabolic syndrome: A review published in The Journal of Nutritional Biochemistry, reports that omega-3 fatty acids may promote metabolic changes in visceral (adipose) tissue, leading to significant improvement in metabolic syndrome. [Abstract from Puglisi MJ, Hasty AH, Saraswathi Y. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. Journal of Nutritional Biochemistry.2011;22(2):101-108. doi: 10. 1016/ j.jnutbio.2010.07.003 | Report]

Eating whole grains, compared to refined grain products, could lower heart disease risk A large cross sectional study among the Framingham Heart Study participants has shown that increasing whole-grain intake is associated with lower visceral adipose tissue (VAT) in adults, whereas higher intakes of refined grains are associated with higher VAT.[See Abstract AJCN, Report]

Obesity

Obesity is now not only more common, but also affecting kids more often. It’s linked to all other problems of metabolic syndrome. In recent years, evidence has been mounting to link the consumption of sugar and sweetened foods with increasing prevalence of obesity, across the ages. Although several therapeutic approaches are being tried, including surgical interventions, the root cause of the obesity epidemic being the modern diet, the most important, most effective, most healthy and least invasive intervention is dietary intervention itself.

Potential mechanisms for fructose-induced insulin resistance. [See]
Main pathways of fructose metabolism that lead to insulin resistance, metabolic syndrome and obesity [See]

Sugar is Toxic: The growing scientific evidence, both epidemiological and mechanistic, very clearly shows that excess sugar induces all of the diseases associated with the metabolic syndrome, Robert H. Lustig et al write in Nature. See Lustig RH, Schmidt LA, Brindis CD. Public health: The toxic truth about sugar. Nature. 02 February 2012;482:27–29. doi:10.1038/482027a[Link][Report | Report | Report | Report]

Isganaitis E, Lustig RH. Fast Food, Central Nervous System Insulin Resistance, and Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:2451–2462. Available at https://www.ahajournals.org/doi/full/10.1161/01.atv.0000186208.06964.91

Modern day food causes all the ills: The highly processed, calorie-dense, nutrient-depleted diet frequently leads to exaggerated supraphysiological post-prandial spikes in blood glucose and lipids. This post-prandial dysmetabolism induces immediate oxidant stress, which increases in direct proportion to the increases in glucose and triglycerides after a meal. The transient increase in free radicals acutely triggers atherogenic changes including inflammation, endothelial dysfunction, hypercoagulability, and sympathetic hyperactivity. To attenuate the increase in glucose, triglycerides, and inflammation after a meal,  a diet rich in minimally processed, high-fiber, plant-based foods, including vegetables and fruits, whole grains, legumes, and nuts is recommended. Other dietary interventions that can significantly ameliorate postprandial dysmetabolism include intake of lean protein, vinegar, fish oil, tea, and cinnamon. Additional benefits may result from calorie restriction, weight loss and exercise.See O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardiovascular Health. J Am Coll Cardiol 2008; 51:249-255 Abstract at http://content.onlinejacc.org/cgi/content/abstract/51/3/249 | Anti-Inflammatory” Diet May Improve Postprandial Glucose, Cardiovascular Health

Dietary fructose linked to metabolic syndrome and diabetes mellitus: In a new study from Vanderbilt University in Nashville, Tennessee, a diet with 30 percent of total energy from fructose was given to 29 adult male rhesus monkeys aged 12 to 20 years for a period of 12 months. Starting at six months and by the end of the 12-month feeding study, ALL (100%) the monkeys developed certain metabolic syndrome components including body adiposity, insulin resistance, and dyslipidemia and four monkeys (15%) developed type 2 diabetes mellitus. [Bremer AA et al. Fructose-Fed Rhesus Monkeys: A Nonhuman Primate Model of Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes. Clinical and Translational Science. August 2011;4(4):243–252. Full Text | Report]

Increased fructose consumption from fruits increases metabolic syndrome risk: A cross-sectional population based study on 2537 subjects (45% men) aged 19-70 y has shown that higher consumption of dietary fructose may have adverse metabolic effects and increase the risks for metabolic syndrome. [Firoozeh Hosseini-Esfahani et al. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study. Nutrition & Metabolism 2011, 8:50 doi:10.1186/1743-7075-8-50 Full text]

Mortera RR, Bains Y, Gugliucci A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Frontiers In Bioscience, Landmark. Jan 1, 2019;24:186-211. Available at http://www.bioscience.org/2019/v24/af/4713/fulltext.htm

Malik VS, Hu FB. Fructose and Cardiometabolic Health. Journal of the American College of Cardiology. 2015;66(14):1615-1624. doi: 10.1016/j.jacc.2015.08.025 Available at https://www.jacc.org/doi/abs/10.1016/j.jacc.2015.08.025

Zhang D-M, Jiao R-Q, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017;9(4):335. https://doi.org/10.3390/nu9040335 Available at https://www.mdpi.com/2072-6643/9/4/335/htm

Tappy L, Lê K-A. Metabolic Effects Of Sweetened Beverages: Pathophysiology And Mechanistic Insights. CMR e Journal. December 2010;3(3):13-18. Available at http://www.myhealthywaist.org/cmrejournal/articles/vol3/v3i3a4.php

Tappy L, Lê K-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiological Reviews January 2010;90(1):23-46. Available at https://journals.physiology.org/doi/full/10.1152/physrev.00019.2009

Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders.

Fructose (Fruit Sugar) is a more important cause for metabolic disorders like diabetes, hypertension, fatty liver disease, obesity

Fructose in fruits can increase obesity: A new study reports that when fructose was consumed, absolute lipogenesis was 2-fold greater and that an early stimulation of lipogenesis after fructose, consumed in a mixture of sugars, augments subsequent postprandial lipemia. Acute intake of fructose stimulates lipogenesis and may create a metabolic milieu that enhances subsequent esterification of fatty acids flowing to the liver to elevate TG synthesis postprandially. See Parks EJ, Skokan LE, Timlin MT, Dingfelder CS. Dietary Sugars Stimulate Fatty Acid Synthesis in Adults. J. Nutr. June 2008;138:1039-1046 Abstract

Energy Drinks Pose Serious Health Risks for Young People: According to a review of scientific literature and Internet sources, published in Pediatrics, energy drinks that contain caffeine, taurine, sugars and sweeteners, herbal supplements etc., are regularly consumed by 30% to 50% of children, adolescents, and young adults and and are associated with risks for serious adverse health effects such as liver damage, kidney failure, respiratory disorders, agitation, confusion, seizures, psychotic conditions, nausea, vomiting, abdominal pain, rhabdomyolysis, tachycardia, cardiac dysrhythmias, hypertension, myocardial infarction, heart failure, and death. [See Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health Effects of Energy Drinks on Children, Adolescents, and Young Adults. Pediatrics. 2011;127:511-528. DOI: 10.1542/peds.2009-3592. Free Full Text | Report]

Sugar sweetened beverages increase the risk of weight gain, development of metabolic syndrome and type 2 diabetes, meta analysis shows [See Malik VS et al. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes A meta-analysis. Diabetes Care November 2010;33(11):2477-2483 Free Full Text]

Sugar Sweetened Beverages Increase the Risk of Metabolic Syndrome, Diabetes and Obesity Vasanti S. Malik et al. Sugar Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A Meta-analysis Diabetes Care. August 2010;33(8) Full Text | Report]

Duwaerts CC, Maher JJ. Macronutrients and the Adipose-Liver Axis in Obesity and Fatty Liver. Cellular and Molecular Gastroenterology and Hepatology2019;7(4):749-761. Available at https://www.cmghjournal.org/article/S2352-345X(19)30009-8/fulltext

Lakhan SE, Kirchgessner A. The emerging role of dietary fructose in obesity and cognitive decline. Nutr J 2013;12:114. https://doi.org/10.1186/1475-2891-12-114. Available at https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-12-114

Metabolic disorders striking the young: Should the stress be on ‘Stress’ or on Food? Many reports emerging from India reveal increasing incidence of metabolic syndrome disorders in young children and many things such as stress at school, sedentary life style, computers, TV, genes and junk food have been blamed. Some have even advised the kids to stop schooling and do yoga for relaxation! Is it not ironical that the so called experts who sought changes in our school education, so as to make it less stressful, now blame the changed methodology for increasing stress? In blaming many things, the strongest reason is bound to be missed: and that reason is the FOOD! See The Young Are Ageing. Outlook Sep 13, 2010 Full Text | Delhi kids suffer from adult ailments! Wonder Woman Sep 8, 2010 Full Text]

Apple Or Pear-Shaped Body Type Equally Dangerous: A study of 220,000 people suggests that being obese – having a body mass index (BMI) of 30 or more – is a major risk factor for heart disease, but found the distribution of fat on the body has no impact on that risk. [The Emerging Risk Factors Collaboration Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. The Lancet. 11 March 2011. doi:10.1016/S0140-6736(11)60105-0 Full Text | Report]

Metabolic Syndrome May be Due to Disease Causing Fat Cells: UC Davis Health System researchers have reported a novel observation that subcutaneous fat of MetS has increased macrophage recruitment with cardinal crown-like structure features and contributes to the increased cellular inflammation that produces increased levels of biomarkers that are correlated with both insulin resistance and low-grade inflammation. [Bremer AA et al. Adipose Tissue Dysregulation in Patients with Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism August 24, 2011 jc.2011-1577. Abstract | Report]

Diet and Obesity May be Linked to Alzheimer’s: A Swedish study that included 8,534 twins over the age of 65, has found that the risk of dementia was almost double in those who were overweight versus those of normal weight and those who were obese had almost a fourfold increase in risk. [Johansson K at al. Longer term effects of very low energy diet on obstructive sleep apnoea in cohort derived from randomised controlled trial: prospective observational follow-up study BMJ 2011; 342:d3017  Abstract | Report | Older Paper]

Premature Death Awaits Obese Kids
Paul W. Franks et al., New Eng Journal Med., 11 February 2010 | Business Week Report

Childhood Obesity Alone May Increase Risk of Later Cardiovascular Disease Being obese by as early as 7 years of age may raise a child’s risk of future heart disease and stroke, even in the absence of other cardiovascular risk factors such as high blood pressure, according to a new study accepted for publication in The Endocrine Society’s Journal of Clinical Endocrinology & Metabolism (JCEM). Abstract | Report in Science Daily | Report in Modern Medicine

Overweight Kids Risk Weak Bones, Diabetes: Abdominal Fat May Play a Role in Bone Strength Norman K Pollock et al. Lower bone mass in prepubertal overweight children with pre-diabetes Journal of Bone and Mineral Research Jul 2010 Abstract | Report]

Higher-Protein/Low-GI Diet Best for Maintaining Weight Loss [See Larsen TM et al. Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance. N Engl J Med November 25, 2010; 363:2102-2113 Abstract | Report]

A Randomized Trial of a Low-Carbohydrate Diet vs Orlistat Plus a Low-Fat Diet for Weight Loss A new randomized trial comparing a low-carbohydrate diet with a low-fat diet in combination with the weight-loss drug orlistat has found that both strategies produced meaningful weight loss and the low-carb diet in addition produced significant improvements in blood pressure. William S. Yancy Jr, et al., Published in Arch Intern Med. on Jan 25, 2010 [Abstract] | Report]

Low-Carb and Mediterranean Diets Better than Low-Fat for Weight Loss, Lipid Changes at 2 Years: Mediterranean and low-carbohydrate diets may be effective alternatives to low-fat diets, offering more favorable effects on lipids (with the low-carbohydrate diet) and on glycemic control (with the Mediterranean diet). See Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359:229-241 Full text Article

Low carbohydrate and high monounsaturated fat diets help weight loss and offer metabolic benefits Brehm BJ,  D’Alessio DA. Weight Loss and Metabolic Benefits With Diets of Varying Fat and Carbohydrate Content: Separating the Wheat From the Chaff Nature Clinical Practice Endocrinology & Metabolism Available at http://www.medscape.com/viewarticle/569321

Rely on internal cues of meal cessation to keep off obesity Wansink B, Payne CR, Chandon P. Internal and External Cues of Meal Cessation: The French Paradox Redux? Obesity 2007;15:2920-2924. Available at http://www.obesityresearch.org/cgi/content/full/15/12/2920

Higher Fat at Breakfast May Be Healthier: University of Alabama research reveals that mice fed a meal higher in fat had normal metabolic profiles and in contrast, mice that ate a more carbohydrate-rich diet in the morning and consumed a high-fat meal at the end of the day saw increased weight gain, adiposity, glucose intolerance and other markers of the metabolic syndrome. [MS Bray, J-Y Tsai et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. International Journal of Obesity. 30 March 2010.] doi:10.1038/ijo.2010.63 [Abstract] | UAB Report]

Type 2 Diabetes Mellitus

Type 2 Diabetes Mellitus is now clearly seen to be related to increasing consumption of modern sugar and cereal based diet. Often associated with other manifestations of metabolic syndrome, such as obesity, hypertension, cardiovascular disease and fatty liver, type 2 diabetes is increasing in frequency and in younger population. Type 2 diabetes is today one of the leading causes of morbidity and mortality in the world. Management of type 2 diabetes has for long been done with oral antidiabetic drugs and/or insulin injections. Recent studies showing the role of dietary factors have opened up the possibilities of successfully controlling or even reversing type 2 diabetes with a strict dietary restriction.

The effects of dietary Fructose and its relationship to insulin resistance/hyperinsulinemia and chronic diseases [See]

White rice and risk of type 2 diabetes: A Meta-analysis of prospective cohort studies has revealed that Asian (Chinese and Japanese) populations had much higher white rice consumption levels than did Western populations and that higher consumption of white rice is associated with a significantly increased risk of type 2 diabetes in Asian populations. Hu EA, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ 2012;344:e2021 doi: 10.1136/bmj.e1454 [Full Text | Editorial | Report]

Sugar is Toxic: The growing scientific evidence, both epidemiological and mechanistic, very clearly shows that excess sugar induces all of the diseases associated with the metabolic syndrome, Robert H. Lustig et al write in Nature. See Lustig RH, Schmidt LA, Brindis CD. Public health: The toxic truth about sugar. Nature. February 2012;482:27–29. doi:10.1038/482027a [Link][Report | Report | Report | Report]

Dietary fructose linked to metabolic syndrome and diabetes mellitus: In a new study from Vanderbilt University in Nashville, Tennessee, a diet with 30 percent of total energy from fructose was given to 29 adult male rhesus monkeys aged 12 to 20 years for a period of 12 months. Starting at six months and by the end of the 12-month feeding study, ALL (100%) the monkeys developed certain metabolic syndrome components including body adiposity, insulin resistance, and dyslipidemia and four monkeys (15%) developed type 2 diabetes mellitus. [Bremer AA et al. Fructose-Fed Rhesus Monkeys: A Nonhuman Primate Model of Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes. Clinical and Translational Science. August 2011;4(4):243–252. Full Text | Report]

Kolderup A, Svihus B. Fructose Metabolism and Relation to Atherosclerosis, Type 2 Diabetes, and Obesity. Journal of Nutrition and Metabolism. 2015, Article ID 823081, 12 pages. https://doi.org/10.1155/2015/823081. Available at https://www.hindawi.com/journals/jnme/2015/823081/

Simopoulos AP. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease. Nutrients 2013;5:2901-2923; doi:10.3390/nu5082901. Available at https://www.researchgate.net/publication/253338685_Dietary_Omega-3_Fatty_Acid_Deficiency_and_High_Fructose_Intake_in_the_Development_of_Metabolic_Syndrome_Brain_Metabolic_Abnormalities_and_Non-Alcoholic_Fatty_Liver_Disease/download

Ang B, Yu GB. The Role of Fructose in Type 2 Diabetes and Other Metabolic Diseases. Nutrition & Food Science. May 2017;8(1):1-4. DOI: 10.4172/2155-9600.1000659. Available at https://www.researchgate.net/profile/Bernadine_Ang2/publication/316605499_The_Role_of_Fructose_in_Type_2_Diabetes_and_Other_Metabolic_DIseases/links/5b6eac6892851ca650552b96/The-Role-of-Fructose-in-Type-2-Diabetes-and-Other-Metabolic-DIseases.pdf

DiNicolantonio JJ, O’Keefe JH, Lucan SC. Added Fructose – A Principal Driver of Type 2 Diabetes Mellitus and Its Consequences. Mayo Clinic Proceedings. January 29, 2015. DOI:https://doi.org/10.1016/j.mayocp.2014.12.019. Available at https://www.mayoclinicproceedings.org/article/S0025-6196(15)00040-3/fulltext

Increased fructose consumption from fruits increases metabolic syndrome risk: A cross-sectional population based study on 2537 subjects (45% men) aged 19-70 y has shown that higher consumption of dietary fructose may have adverse metabolic effects and increase the risks for metabolic syndrome. [Firoozeh Hosseini-Esfahani et al. Dietary fructose and risk of metabolic syndrome in adults: Tehran Lipid and Glucose study. Nutrition & Metabolism 2011, 8:50 doi:10.1186/1743-7075-8-50 Full text]

Malik VS, Hu FB. Fructose and Cardiometabolic Health. Journal of the American College of Cardiology. 2015;66(14):1615-1624. doi: 10.1016/j.jacc.2015.08.025 Available at https://www.jacc.org/doi/abs/10.1016/j.jacc.2015.08.025

Energy Drinks Pose Serious Health Risks for Young People: According to a review of scientific literature and Internet sources, published in Pediatrics, energy drinks that contain caffeine, taurine, sugars and sweeteners, herbal supplements etc., are regularly consumed by 30% to 50% of children, adolescents, and young adults and and are associated with risks for serious adverse health effects such as liver damage, kidney failure, respiratory disorders, agitation, confusion, seizures, psychotic conditions, nausea, vomiting, abdominal pain, rhabdomyolysis, tachycardia, cardiac dysrhythmias, hypertension, myocardial infarction, heart failure, and death. [See Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health Effects of Energy Drinks on Children, Adolescents, and Young Adults. Pediatrics. 2011;127:511-528. DOI: 10.1542/peds.2009-3592. Free Full Text | Report]

Sugar sweetened beverages increase the risk of weight gain, development of metabolic syndrome and type 2 diabetes, meta analysis shows [See Malik VS et al. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes A meta-analysis. Diabetes Care November 2010;33(11):2477-2483 Free Full Text]

Sugar Sweetened Beverages Increase Diabetes Risk With or Without Weight Gain[See Full Text Diabetes Care, Report]

Sugar Sweetened Beverages Increase the Risk of Metabolic Syndrome, Diabetes and Obesity Vasanti S. Malik et al. Sugar Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A Meta-analysis Diabetes Care. August 2010;33(8) Full Text | Report]

Fructose (Fruit Sugar) is a more important cause for metabolic disorders like diabetes, hypertension, fatty liver disease, obesity

Overweight Kids Risk Weak Bones, Diabetes: Abdominal Fat May Play a Role in Bone Strength Norman K Pollock et al. Lower bone mass in prepubertal overweight children with pre-diabetes Journal of Bone and Mineral Research Jul 2010 Abstract | Report]

Modern day food causes all the ills: The highly processed, calorie-dense, nutrient-depleted diet frequently leads to exaggerated supraphysiological post-prandial spikes in blood glucose and lipids. This post-prandial dysmetabolism induces immediate oxidant stress, which increases in direct proportion to the increases in glucose and triglycerides after a meal. The transient increase in free radicals acutely triggers atherogenic changes including inflammation, endothelial dysfunction, hypercoagulability, and sympathetic hyperactivity. To attenuate the increase in glucose, triglycerides, and inflammation after a meal,  a diet rich in minimally processed, high-fiber, plant-based foods, including vegetables and fruits, whole grains, legumes, and nuts is recommended. Other dietary interventions that can significantly ameliorate postprandial dysmetabolism include intake of lean protein, vinegar, fish oil, tea, and cinnamon. Additional benefits may result from calorie restriction, weight loss and exercise. See O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardiovascular Health. J Am Coll Cardiol 2008; 51:249-255 Abstract at http://content.onlinejacc.org/cgi/content/abstract/51/3/249| Anti-Inflammatory” Diet May Improve Postprandial Glucose, Cardiovascular Health

Certain Advanced Glycation End products (AGEs) Increase the risk of Complications in Diabetes: New study at the Joslin Diabetes Center has revealed that patients of Type 1 diabetes with higher levels of carboxyethyl-lysine and pentosidine AGEs are 7.2-fold more likely to have any complication. Earlier studies had revealed that these AGEs are linked more to fructose. [Sun JK et al. Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration: The Joslin 50-Year Medalist Study. Diabetes Care 29 March, 2011;34(4):968-974. doi: 10.2337/dc10-1675 Full Text | Mikulíková K, Eckhardt A, Kunes J, Zicha J, Miksík I. Advanced glycation end-product pentosidine accumulates in various tissues of rats with high fructose intake. Physiol Res. 2008;57(1):89-94. Epub 2007 Feb 8. Full text | Krajčovičova-Kudlačkova M, Šebekova K, Schinzel R, Klvanova J. Advanced Glycation End Products and Nutrition. Physiol. Res. 2002;51:313-316. Full text]

Antibiotic Use May Fuel Modern Day Diseases: Increase in modern day diseases such as obesity, diabetes, allergies and asthma correlate with increasing use of antibiotics, that may be changing the gut milieu. [Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria. Nature 25 August 2011;476:393–394. Link | Report]

Five Lifestyle Changes Can Go a Long Way Toward Cutting the Odds of Type 2 Diabetes: A Population-based prospective cohort study that examined how combinations of lifestyle risk factors relate to the 11-year risk for incident diabetes (National Institutes of Health (NIH)–AARP Diet and Health Study) included 114 996 men and 92 483 women, aged 50 to 71 years in 1995 to 1996, without evidence of heart disease, cancer, or diabetes, with a follow-up survey in 2004 to 2006. Of these, 11 031 men (9.6%) and 6969 women (7.5%) developed new-onset diabetes. Normal weight (maintained a body mass index below 25), nonsmoking, physically active (at least 20 minutes of heart-pounding, sweat-inducing exercise three or more times per week), healthy diet [a diet with lots of fiber, little trans fat, few refined or sugary carbohydrates, and a high ratio of good (polyunsaturated) to bad (saturated) fats] and little to no drinking (two drinks or less a day for men, and one drink or less for women) were associated with least risk of developing diabetes mellitus. [Reis JP et al. Lifestyle Factors and Risk for New-Onset Diabetes. A Population-Based Cohort Study. Ann Int Med. September 6, 2011;155(5):292-299 Full Text | Report]

Nuts in Place of carbohydrates Helps Control Blood Sugar and Serum Lipids: Two ounces of nuts daily as a replacement for carbohydrate foods improves both glycemic control and serum lipids in type 2 diabetes.[Jenkins DJA. Nuts as a Replacement for Carbohydrates in the Diabetic Diet. Diabetes Care August 2011;34(8):1706-1711. Full text

Eating nuts every day helps control Type 2 diabetes and prevent its complications: New research from St. Michael’s Hospital and the University of Toronto has revealed that two ounces of nuts daily as a replacement for carbohydrate foods improved both glycemic control and serum lipids in type 2 diabetes. [Jenkins DJA. Nuts as a Replacement for Carbohydrates in the Diabetic Diet. Diabetes Care June 29, 2011 doi: 10.2337/dc11-0338 Full Text | Report]

Almonds may help reduce risk of type 2 diabetes and heart disease: Study shows that consuming an almond-enriched diet may help improve insulin sensitivity and decrease LDL-cholesterol levels in those with prediabetes. [Michelle Wien et al. Almond Consumption and Cardiovascular Risk Factors in Adults with Prediabetes. Journal of the American College of Nutrition. 2010;29(3):189-197. Abstract | Report]

Low Carbohydrate Diet May Reverse Kidney Failure in People With Diabetes: Researchers from Mount Sinai School of Medicine have for the first time determined that a specialized high-fat, low carbohydrate diet may reverse impaired kidney function in people with Type 1 and Type 2 diabetes. [Poplawski MM, Mastaitis JW, Isoda F, Grosjean F, Zheng F, et al. Reversal of Diabetic Nephropathy by a Ketogenic Diet. PLoS ONE 2011;6(4):e18604. doi:10.1371/journal.pone.0018604 Full Text | Older Study | Report | Report]

Omega 3 fats reduce diabetes risk: Two studies have reported that consumption of omega 3 fats reduces teh risk of diabetes mellitus [Brostow DP et al. Omega-3 fatty acids and incident type 2 diabetes: the Singapore Chinese Health Study.. Am J Clin Nutr July 2011 ajcn.009357. doi: 10.3945/​ajcn.110.009357 | Djoussé L et al. Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr July 2011 ajcn.013334. doi: 10.3945/​ajcn.111.013334]

Mediterranean Diet Cuts Metabolic Syndrome Risk: A meta analysis of the results of 50 studies comprising more than 500,000 people has shown that the Mediterranean diet can reduce the risk of metabolic syndrome. [Abstract from Kastorini CM. The Effect of Mediterranean Diet on Metabolic Syndrome and its Components: A Meta-Analysis of 50 Studies and 534,906 Individuals. J Am Coll Cardiol. 2011;57:1299-1313. doi:10.1016/j.jacc.2010.09.073. | Report]

Mediterranean diet protects against type 2 diabetes: [See Full Text Diabetes Care, Abstract, Report]

Mediterranean Diet Might Delay Need for Drugs in Diabetes Full Text in Esposito K et al., Annals Int Med, 1 Sep, 2009; Medscape Article

Increasing daily intake of green leafy vegetables could significantly reduce the risk of Type 2 Diabetes: Increasing consumption of green vegetables, and not fruits, helps to reduce the risk of diabetes, a meta analysis finds See Patrice Carter et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 2010;341:c4229 Full Text | Editorial]

Low-carbohydrate diet has similar effects as low-fat diet in diabetes Full Text in Davis NJ et al., Diabetes Care, July, 2009

Low carbohydrate and high monounsaturated fat diets help weight loss and offer metabolic benefits
Brehm BJ,  D’Alessio DA. Weight Loss and Metabolic Benefits With Diets of Varying Fat and Carbohydrate Content: Separating the Wheat From the Chaff Nature Clinical Practice Endocrinology & Metabolism Available at http://www.medscape.com/viewarticle/569321

Type 2 diabetes in newly diagnosed ‘can be reversed’: A small study from Newcastle University, reported in Diabetologia, has found that an extreme eight-week diet of 600 calories a day can reverse Type 2 diabetes in people newly diagnosed with the disease. Although larger studies are needed, these findings are important. [BBC Report]

Metabolic disorders striking the young: Should the stress be on ‘Stress’ or on Food? Many reports emerging from India reveal increasing incidence of metabolic syndrome disorders in young children and many things such as stress at school, sedentary life style, computers, TV, genes and junk food have been blamed. Some have even advised the kids to stop schooling and do yoga for relaxation! Is it not ironical that the so called experts who sought changes in our school education, so as to make it less stressful, now blame the changed methodology for increasing stress? In blaming many things, the strongest reason is bound to be missed: and that reason is the FOOD! See The Young Are Ageing. Outlook Sep 13, 2010 Full Text | Delhi kids suffer from adult ailments! Wonder Woman Sep 8, 2010 Full Text]

Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study: Like the ACCORD Study, one more British study involving 47970 diabetics above the age of 50 years finds that low and high mean HbA1c values are associated with increased all-cause mortality and cardiac events, meaning that both uncontrolled disease as well as intensive treatment can kill. Craig J Currie et al., The Lancet, Early Online Publication, 27 January 2010

Pathophysiology of Insulin Resistance and Noninsulin Resistance Dependent Diabetes [See]

Animal Milk is Unhealthy

It is difficult to find people endorsing a statement that milk is not a healthy food. Many of those who drink milk have a sort of an  emotional attachment with that ‘food’. After all, it is one ‘food’ that is consumed throughout life, right from the moment one is born. And man has been drinking it for millennia. Is it not a nectar of life?

Is it?

Milk is a complete, excellent nutrition. No doubt. It is the highly specialised, specific nutrition [Hamosh M, 1996] made by the mammalian mother for HER OWN child. Nothing more. The fact of life is that milk of a mammalian species is highly specific for its own progeny and for none else. [Kradijan RK] While breastfeeding is the proud privilege of the mother, getting that nectar from the mother is the birth right of every child. Just as a mother will not feed a child not her own, any other milk is neither a food nor a necessity for the child (and for those who have grown beyond childhood). Drinking animal milk is, therefore, an insult to motherhood. And that may be the reason why most kids refuse to drink animal milk!

Milk does not fulfill all the nutritional needs of a growing baby beyond the age of six months. If one relies on milk as a ‘complete nourishment’, a false sense of security about the ‘virtues of milk’ may in fact lead to deficiency of many vital nutrients. [Palmer LF]. The capability to digest and absorb milk declines naturally as one grows [Rees L], resulting in malabsorption and diseases.

It is often argued that man has been drinking animal milk from time immemorial and the fears of any adverse effects of its consumption are unfounded. But is this true? Man started using animal milk only about seven to eight thousand years ago and until about 150 years ago, milk was used largely to make cheese and butter [Rollinger M] and its direct consumption was not a regular habit. The processes of pasteurization, skimming, homogenisation etc., have all been developed only in the last 100 years and it is only very recently that animal milk has ‘become an essential nutrient’ for man [Brief History], touted as something as good or even better than breastmilk!

On the other, what is being today sold as ‘milk’ seems far from the animal milk that was consumed about 70-80 years ago. Milk is a homogenous mixture of lactose, various fats, proteins and other vital nutrients like minerals in a composition that is unique to a particular spicies. Skimming, pasteurization, homogenisation and such other processes ensure that this wonder food is converted into a fat-depleted white concoction that is rich in proteins (possibly denatured by heat) and calcium! While it has been conclusively established that the various animal proteins of the dairy milk can trigger a variety of problems in humans, [Stengler M; Kitazawa H, 2007; Tailford KA, 2003; Rytkönen J, 2006; Almås H], there are not many studies on the effects of pasteurization on the milk proteins and the resultant problems.[Real Milk; Alvarez; Rytkönen J, 2006]

It must be said that our knowledge of the many contents of milk and their actions on the human body is incomplete. Recently a vascular endothelial growth factor was isolated from human milk.[Hoshimoto, 2000] There are many such growth factors and other components in milk that promote the development of the brain and nervous system, immune system, gastrointestinal tract, bones and other organs in the new born baby.[Grosvenor CE, 1993]. But by consumption of milk beyond early childhood, these growth factors can promote abnormal and unnatural growth. Many studies have revealed that children consuming animal milk grow taller.[Hoppe C, 2006; Okada T, 2004; Rich-Edwards JW, 2007; Wiley AS, 2005]

It has also been shown that growth factors like the IGF 1 present in milk can promote tumor growth and that incidence of many types of cancer is higher in people consuming animal milk.[Epstein SS, 1996; Larsen HR; Oransky I; PCRM; Stewart A, 2004] It has also been reported that various hormones secreted in animal milk can act on the human reproductive system, leading to reproductive disorders and even malignancies of the reproductive system.[Ganmaa D, 2001; Ganmaa D, 2002; Ganmaa D, 2003; Ganmaa D, 2005; Health Effects; Li D, 2003; Sato A]

Food consumed by the cattle and the pesticides therein as well as the growth hormones and various drugs administered to the cattle find their way into the milk secreted by these animals and can cause detrimental effects on the consumers of animal milk. .[Epstein SS, 1996; Palmer LF]

Shall we then abandon drinking milk? Yes and not at all. Mother’s breastmilk is nectar for the baby and it is a must, there should not be any doubts on that. Animal milk is unnecessary and can cause several problems in humans. Former is the fact of nature and the latter is a multi billon dollar business!

  • Mother’s milk is nectar for her baby, it is the most complete and the best food for the new born. It should be fed within half an hour of birth and should remain the exclusive food for the first six months of the new born’s life.
  • Only mother’s milk is the food for her baby; milk of one mammal is meant for its own offspring, it won’t suit another.
  • Animal milk is not properly digested and absorbed in the human intestine. [Rees L] Compared to breastmilk, the ratio of fats, proteins and lactose is very different in animal milk and this can affect the growth and development of the child and lead to many diseases thereafter.[Oski FA, 1985]
  • Anything that is white is not milk. From milking to the hands of the consumer, animal milk undergoes so many processes that by the time it is marketed, it is more of a concoction of proteins (altered by the heat of pasteurization), calcium and lactose, deprived of the essential fats that keep these components together. Far away from the nature’s wonder. Completely different from mother’s milk. And this can do more harm than good.[Real Milk]
  • Consumption of animal milk can lead to obesity, atherosclerosis, diabetes, gastrointestinal disorders, respiratory disorders, cancers, osteoporosis and fractures, many types of infections, acne, stones in the kidneys etc.

Why breastfeeding?

Milk is the highly specialised food made by the mother for her OWN child. Its a ‘live food’. It provides energy in the form of lactose, various proteins that are highly specific and help in promoting the growth and immunity of the new born and very important fats that play a significant role in the development of the brain in the initial months of the new born’s life. Breastfeeding is the continuum of the bonding between the mother and the child, supporting the child’s physical, mental and emotional development in the post natal life. This is why breastmilk is unique and nothing else can replace it.

Initiating breastfeeding within half an hour of birth helps in the formation, development and strengthening of feeding and satiety mechanism in the brain, with long term implications on feeding behaviour [Alexe D, 2006; Bonnet M, 2002; Bouret SG, 2004; Bouret SG, 2004b; Bouret SG, 2004c; Casabiell X, 1997; El-Haddad MA, 2004; Gluckman PD, 2006; Gunderson EP, 2007; Gupta A; Mantzoros CS; Miralles O, 2006; Pico´ C, 2007; Salimei E, 2002; Steppan CM, 1999] that may help in the prevention of obesity, diabetes and such other metabolic disorders later in life.

To facilitate the transition from gestation to lactation, there occur adaptations in the gastrointestinal and immune systems during the first year of life.[Summary, 1985] During the first six months, the infant’s intestine absorbs anything and everything that is fed.  For this reason, it is now recommended that in the first six months of life, the child should be fed only mother’s milk, nothing else, not even water.[CDC; WHO]

Breastfeeding confers many advantages to the infant. Breastfed children have better host protection and improved developmental outcomes compared with formula-fed premature infants. Compared to formula-fed infants, breast-fed children experience less illness and appear to have enhanced cognitive development.[Breastfeeding, 2005; Dewey KG, 1998] Breastfeeding decreases the incidence and/or severity of a wide range of infectious diseases. Studies suggest decreased rates of sudden infant death syndrome in the first year of life and reduction in incidence of insulin-dependent (type 1) and non–insulin-dependent (type 2) diabetes mellitus, lymphoma, leukemia, and Hodgkin disease, overweight and obesity, hypercholesterolemia, and asthma in older children and adults who were breastfed, compared with individuals who were not breastfed.

Breast-fed infants appear to self-regulate their energy intake at a lower level than consumed by formula-fed infants and have a lower metabolic rate. Evidence to date suggests that there are no apparent adverse consequences associated with the lower intake and slower weight gain of breast-fed infants. Breast fed infants are not only leaner, but also tend to put on less weight even after complimentary feeds are introduced. That means breastfed children are protected against the development of obesity. On the other, formula feeding leads to abnormal weight gain right from infancy. The WHO Multicentre Growth Reference Study (MGRS), which was implemented between 1997 and 2003, included children from a diverse set of countries, namely Brazil, Ghana, India, Norway, Oman and the USA. This study found that the breastfed children had lesser body weight compared to the growth chart then in use. This growth chart was based on the weights of formula fed infants from studies conducted in the UK more than 20 years earlier.[Baby growth; Bonyata K; WHO revises] This multicentre study has now formed the basis for the new growth chart for babies that shows a leaner weight for the breast fed infants. A key characteristic of the new standards is that they explicitly identify breastfeeding as the biological norm and establish the breastfed child as the normative model for growth and development.[Onis MD, 2006] Although we sent an artificial satellite around our planet earth 50 years ago, it had to wait for 2006 AD for the human race to realise that mother’s milk is the best (and the ONLY) food for the new born baby!

Mother’s milk is nectar for the baby. Nothing else can come anywhere close to it. Any attempt to promote animal milk or formula feeds as equivalent or superior to mother’s milk is nothing but an insult to motherhood and an attempt to break that special bond between the mother and her child.

Composition of milk differs from species to species. Look at this comparison:[Cip; Dairyforall a,b,c; Foodsci; Saanendoah]

Product Fat (%) Protein (%) Carbohydrate (%) Calcium
(mg/100 g)
Phosphorus (mg/100 g) Water (%)
Human Milk 4.4 1.0 6.9 32 14 87.7
Cow’s Whole Milk 3.3 3.3 4.7 119 93 88.0
Goat’s Milk 4.1 3.6 4.4 133 111 86.5
Low fat milk 2.0 3.3 4.8 122 95 89.2
Skim milk 0.2 3.4 4.9 123 101 90.8
Cultured buttermilk 0.9 3.3 4.8 116 89 90.1
Plain yogurt 3.3 3.5 4.7 121 95 88.0
Butter 81.1 0.9 0.1 24 23 15.9

Human milk has higher concentration of sugars and fats with low quantities of proteins while animal milk has higher protein content. The calcium content of human milk is almost one fourth of what is present in animal milk while the phosphorus content is about one eighth compared to animal milk. The reasons are simple: The human child needs far less proteins, calcium and phosphorus for its growth compared to the animal calves. And the high levels of these substances in animal milk could be detrimental to our babies.

And the fats in human milk are specifically needed for the development of the brain tissue after birth. Long-chain polyunsaturated fatty acids are essential for growth and development, and their crucial role in the development of the central nervous system and in retinal function has been the subject of many studies. A study among Swedish mothers found the ratio between arachidonic acid (AA) and docosahexaenoic acid (DHA) in the milk to be approximately the same as in the brain of infants, and was found to be positively correlated with the rate of gain of the occipito-frontal head circumference and of the calculated brain weight at 1 month and 3 months of age, respectively.[Xiang M, 2000] Studies have shown that children who had consumed mother’s milk in the early weeks of life had a significantly higher IQ at 7 1/2-8 years than did those who received no maternal milk. An 8.3 point advantage (over half a standard deviation) in IQ remained even after adjustment for differences between groups in mother’s education and social class.[Lucas A, 1992; Morley R, 1988] A meta-analysis indicated that, after adjustment for appropriate key cofactors, breast-feeding was associated with significantly higher scores for cognitive development than was formula feeding.[Anderson JW, 1999; Uauy R, 1999]

Milk proteins comprise of the casein family that contain phosphorus and the serum (whey) proteins that do not contain phosphorus. The high phosphate content of the casein family allows it to associate with calcium and form calcium phosphate salts. The abundance of phosphate allows milk to contain much more calcium.[Milk Protein] Human milk has whey and casein protein at a ratio of 70:30 respectively.[Summary] In cow’s milk, approximately 82% is casein and 18% is whey protein. That means, the casein content of breastmilk is not even 50% of that in cow’s milk and this excess casein in cow’s milk has been blamed for the many allergic reactions found in those consuming cow’s milk.[Stengler M] The serum (whey) protein family in cow’s milk consists of approximately 50% ß-lactoglobulin, 20% α-lactalbumin, blood serum albumin, immunoglobulins, lactoferrin, transferrin, and many minor proteins and enzymes. ß-lactoglobulin is not present in human milk.[Milk Protein] It is these ‘foreign proteins’ and the altered ratio of casein and whey proteins that elicit allergic response in the human body and result in many problems. [Docena GH, 1996; Høst A, 1994; Lara-Villoslada, 2000; Stengler M] Feeding infants during the first year of life with whole milk from cows is associated with occult gastrointestinal bleeding, iron deficiency anemia, and cow’s milk allergy. The consumption of whole milk after the first year of life has a potential role in a variety of disorders including recurrent abdominal pain of childhood, atherosclerosis, cataracts, milk-borne infections and juvenile delinquency.[Oski FA, 1985] If the mother is drinking cow’s milk, the cow’s milk proteins are secreted in breastmilk and even this can cause severe allergic reactions (anaphylaxis) in the baby.[Lifschitz C, 1988]

Gut is the gateway that gets directly exposed to milk and can suffer innumerable problems due to milk – from aphthous ulcers in the mouth to serious disorders like the inflammatory bowel diseases. Here are the reports:

  • Antibodies against cow’s milk have been demonstrated in 25 to 75 percent of patients with recurrent aphthous ulcers.[Earl BJ, 1989; Woo SB, 1996]
  • Bovine whey protein can elicit symptoms of infantile colic in colicky formula-fed infants.[Lothe L, 1989]
  • Mothers taking cow’s milk can pass on the proteins to their babies through breast milk and this can cause infantile colic in the infants and the symptom disappears when mothers stop the ingestion of cow’s milk.[Jakobsson I, 1978]
  • Gastroesophageal reflux in infants and young children may be related to cow’s milk allergy.[Forget P, 1985; Iacono G, 1996; Nielsen RG, 2004; Salvatore S, 2002]
  • Cow’s milk intolerance may lead to gastroduodenitis resulting in occult gastrointestinal hemorrhage and hypochromic anemia[Coello-Ramirez P, 1984] and may cause impaired gastric function and malabsorption.[Kokkonen J, 1979]
  • Cow’s milk protein-sensitive enteropathy (CMSE) is a well known entity among children [Kokkonen J, 1979] and may cause overt rectal bleeding or profound anemia from occult intestinal bleeding.[Willetts IE, 1999]
  • It has been reported that children who had failure to thrive, diarrhoea and/or vomiting when fed a diet of cow’s milk, improved when their diet was changed.[Vitoria JC, 1979]
  • In young children, chronic constipation can be a manifestation of intolerance of cow’s milk.[Iacono G, 1998]
  • Many studies have shown a relationship between cow’s milk sensitivity and the development of ulcerative colitis.[Glassman MS, 1990; Knoflach P, 1987; Pittschieler K, 1990; Samuelsson SM, 1991; Taylor KB, 1961; Truelove SC, 1961] Antibodies to cow’s milk proteins have been found to be significantly elevated in patients with inflammatory bowel disease as compared to controls[Knoflach P, 1987; Taylor KB, 1961]. Ulcerative colitis patients were found to be more likely to have symptoms induced by drinking milk.[Samuelsson SM, 1991; Truelove SC, 1961] Severe colitis with bloody diarrhoea has been reported in a 3 month old boy due to cow’s milk proteins secreted in breast milk.[Pittschieler K, 1990]
  • Suppression of mucosal phagocyte function by microbial mannans, possibly of Mycobacterial origin, may contribute to  pathogenesis of Crohn’s Disease. Mycobacterium paratuberculosis present in cow’s milk may inhibit the phagocytic activity against E. coli, the gut bacteria whose numbers are found to be increased in Crohn’s Disease [Mpofu CM, 2007]
  • Studies also suggest a relationship between cow’s milk consumption and irritable bowel syndrome.[Niec AM, 1998; Vernia P, 1995; Vernia P, 2001; Vernia P, 2004]

Cow’s milk and its allergy can cause many problems involving the respiratory tract, from sinusitis to asthma:

  • Heiner syndrome is a food hypersensitivity pulmonary disease that affects primarily infants, and is mostly caused by cow’s milk. Only a few reports have been published, which may be due to its misdiagnosis. The symptoms can be in the form of cough, wheezing, hemoptysis (blood in the sputum), nasal congestion, breathlessness, recurrent ear infections, recurrent fever, lack of appetite, vomiting, colic or diarrhea, bleeding in stools, and failure to thrive. There may be infiltrates in the lung on a chest x ray. High titers of precipitating antibodies to CM proteins and milk-specific immunoglobulin E (IgE) are demonstrable in these children. Milk elimination results in remarkable improvement in symptoms within days and clearing of the pulmonary infiltrate within weeks.[Moissidis et al, 2005]
  • Avoiding standard cow’s milk based formula reduces the risk of infants experiencing asthma or wheeze during the first year of life.[Ram FSF] and in another study, follow-up until 5 years of age showed a significant lowering in the cumulative incidence of atopic disease in the breast-fed and the whey hydrolysate groups, compared with the conventional cow’s milk group.[Chandra RK, 1997]
  • Children with cow’s milk allergy in infancy, even when properly treated, experience significantly more recurrent otitis media, the risk associating with concomitant development of respiratory atopy.[Juntti H, 1999]
  • Milk lipids can disturb gas exchange in asthmatic patients.[Haas F, 1991]

This is not all. There is more, much more. Cow’s milk is increasingly being blamed for serious disorders like Insulin Dependent Diabetes (IDDM)), cancers and many more. Early exposure to cow’s milk has been reported to be an important causative factor for beta cell destruction and type 1 diabetes mellitus (IDDM).

In the first six months of life, the gut absorbs everything easily and feeding animal milk during this period would result in the absorption of animal proteins that can induce antibodies, resulting in various disorders, including Type 1 diabetes.

  • There is a significant positive correlation between consumption of unfermented milk protein and incidence of IDDM in data from various countries. Conversely, a possible negative relationship is observed between breast-feeding at age 3 months and IDDM risk.[Scott FW, 1998]
  • Associations of infant feeding patterns and milk consumption with cow’s milk protein antibody titres were studied in 697 newly-diagnosed diabetic children, 415 sibling-control children and 86 birth-date-and sex-matched population-based control children in the nationwide Childhood Diabetes in Finland study. The results suggest that young age at introduction of dairy products and high milk consumption during childhood increase the levels of cow’s milk antibodies and that high IgA antibodies to cow’s milk formula are independently associated with increased risk of IDDM.[Virtanen SM, 1994]
  • It is reported that a shorter duration of exclusive breast-feeding is a risk factor for IDDM and that the introduction to cow’s milk products before age 8 days is a risk factor for the disease.[Gimeno SG, 1997] Many studies have shown that early exposure to cow’s milk or Cow’s milk-based infant formulas may be an important determinant of subsequent type I diabetes.[Gerstein HC, 1994; Schrezenmeir J, 2000; Wasmuth HE, 2000]
  • The cow’s milk proteins have been shown to be ‘diabetogenic’, [Wasmuth HE, 2000] acting as the triggers for the autoimmune destruction of pancreatic beta cells. It has been suggested that cow’s milk proteins like β-lactoglobulin, albumin etc., may be the triggers and antibodies to cow’s milk proteins that may cross react with beta cell proteins have been reported in patients with IDDM.[Dahl-Jorgensen K, 1991; Dahlquist G, 1992; Karjalainen J, 1992; Savilahti E, 1988; Savilahti E, 1993; Wasmuth HE, 2000]

Milk and Multiple Sclerosis

Consumption of animal milk early in life has been blamed as a cause for multiple sclerosis, a debilitating neurological disorder, later in life. Cow’s milk has only one-fifth as much linoleic acid as human breast milk and deficiency of this vital building block for the nervous system during the formative years may predispose to multiple sclerosis later in life. [Agranoff BW, 1974; Simon H; McDougall JA]

Milk is also blamed as an important cause for acne in adolescence

Milk is increasingly being blamed for acne, a common problem among adolescents.[Cordain L (a); Cordain L (b)] It is suggested that hormones and bioactive molecules present in milk may be linked to teen-age acne.[Acne; Adebamowo CA, 2005; Adebamowo CA, 2006]

Milk is a cause for obesity and atherosclerosis

Milk is one among the foods blamed for the obesity epidemic.[Pangborn RM, 1985] It has been found that animal proteins tend to increase the blood levels of cholesterol [Kritchevsky D, 1995] and casein is atherogenic.[Tailford KA, 2003]

Milk is also blamed for kidney stones.

Milk consumption is also related to kidney stones. Patients with kidney stones are more likely to have a monotonous diet consisting mainly of milk and dairy products.[Kwias Z, 1979] Calcium intake, particularly through dairy products, may be associated with increased excretion of calcium in the urine and stone formation.[Goldfarb DS, 1999] Recently, tiny microbes called nanobacteria have also been blamed for kidney stones. (See below)

Milk and nanobacteria

Some researchers have reported on tiny microbes in the blood that tend to promote calcification in atherosclerotic plaques and renal stones. Termed nanobacteria, these have been isolated from cows’ blood. Milk is reported to enhance the growth of these bacteria. If their existence is proven, it may be interesting to see whether cow’s milk is the primary source of these bacteria for human infections and to know whether milk plays havoc by promoting their growth in human blood and tissues. [Carson DA, 1998; Ciftcioglu, 1997; Kajander EO; Kajander EO, 1998; Miller VM, 2004]

Milk can be a source for other infections as well, including tuberculosis. See these reports:

Animal milk, after collection and on storage, is an excellent medium for many types of microbes to grow profusely. Staphylococcus aureus, Streptococcus, Campylobacter, Yersinia enterocolitica, Listeria monocytogenus, Escherichia coli, E. coli 0157:H7, Shigella, Brucella, Toxoplasma, tubeculosis causing Mycobacteria, Hepatitis A virus etc., can be transmitted to man through animal milk.[Alvarez VB] Prior to pasteurization, cow’s milk was an important source for infections like tuberculosis and diarrhoeal infections were common among infants not wholly breastfed.[Atkins PJ, 1992] In June and July 1982, a large interstate outbreak of Yersinia enterocolitica infections caused by an unusual serotype occurred in Tennessee, Arkansas, and Mississippi and it was fund that drinking milk pasteurized by a particular plant was associated with the outbreak.[Tacket CO, 1984] Many studies have shown that milk can be an important source for tuberculosis. Mycobacterium bovis infection through consumption of unpasteurised milk has been reported to cause tuberculosis of the intestine [Ayele WY, 2004; Leite CQF, 2003], tongue [Pande TK, 1995], lymph nodes of the neck (scrofula) and other forms of nonpulmonary TB.[Cosivi O, 1998] A study from Russia found that pulmonary tuberculosis was more common in those drinking raw milk.[Coker R, 2006]

Milk is blamed for many cancers too!

Today, the incidence of various cancers is not only increasing, but also increasingly striking the younger generation. Association of  consumption of animal milk and dairy products and cancers of the breast, female reproductive organs except the cervical canal, prostate, testes, kidneys, lungs as well as leukemias and lymphomas have been reported in many studies. Many reports have suggested that the various growth factors in milk could promote growth of cancer cells in humans. [Buehring GC, 2003; Chan JM, 2001; Davies TW, 1996; Epstein SS, 1996; Ferrer JF, 1981; Ganmaa D, 2002; Ganmaa D, 2003; Garner MJ, 2003; Larsen HR; Li D, 2003; Matsumoto M, 2007; Mettlin C, 1989; Mettlin CJ, 1991; Milk Causes Cancer; Oransky I; Park Y, 2007; Park SY, 2007; PCRM; Qin LQ, 2004; Rose DP, 1986; Sigurdson AJ, 1999; Stang A, 2006; Stewart A, 2004; Studies; Ursin G, 1990; Ward MH, 1994; Zheng T, 2004]

Even with all these, milk is promoted in a big way as a source of calcium, to prevent osteoporosis. But the fact is that animal milk increases the risk of osteoporosis and fractures. It is obvious that the Dairy industry is behind this propaganda. [Dairy’s Role] It can be easily seen that many papers on the virtues of milk are published with the support of the dairy industry. 9Some examples are: Jean Woo, 2007 supported by Fonterra Brands; Fiorito LM, 2006 by The National Dairy Council; Cadogan J, 1997 by UK Dairy Industry; Black RE, 2002 by New Zealand Milk. Even then, these papers claim that there are no conflicts of interest!) On the contrary, there is not enough evidence to support the claim that consumption of milk can prevent osteoporosuis or that milk is a good source of calcium for humans.[Weinsier RL, 2000] Studies have found that consumption of milk can in fact increase the risks of osteoporosis and fractures.[Calcium and Bone; Got Osteoporosis]

  • A 12-year prospective study conducted at Harvard Medical School, Boston, Mass., among 77761 women, aged 34 through 59 years in 1980, who had never used calcium supplements found no evidence that higher intakes of milk or calcium from food sources reduce fracture incidence. Women who drank two or more glasses of milk per day had relative risks of 1.45 for hip fracture and 1.05 for forearm fracture when compared with women consuming one glass or less per week. Likewise, higher intakes of total dietary calcium or calcium from dairy foods were not associated with decreased risk of hip or forearm fracture. These data do not support the hypothesis that higher consumption of milk or other food sources of calcium by adult women protects against hip or forearm fractures.[Feskanich D, 1997]
  • In an 18-y prospective analysis in 72 337 postmenopausal women conducted at the Harvard Medical School, Boston, neither milk nor a high-calcium diet appeared to reduce the risk of hip fracture. Because women commonly consume less than the recommended intake of vitamin D, the authors recommend that a supplement use or dark fish consumption may be prudent.[Feskanich D, 2003]
  • A study of 39,563 men and women (69% female) from six prospectively studied cohorts found that a low intake of calcium (less than 1 glass of milk daily) was not associated with a significantly increased risk of any fracture, osteoporotic fracture or hip fracture.[Kanis JA, 2005]

Therefore, hardly any evidence supports the notion that consumption of animal milk could be of benefit for man. In addition to all the adverse reports listed above, a recent report suggests that even a little milk in your cup of tea negates the beneficial effects of tea on your blood vessels![Lorenz M, 2007] Milk no doubt is a poison! It is therefore being suggested that growing children should get the required calcium from non-milk sources.[Lanou AJ, 2005]

If you want to live long and be healthy, STOP ANIMAL MILK NOW!

References

  1. Acne, Milk And The Iodine Connection. Science Daily (Dec. 8, 2005). At http://www.sciencedaily.com/releases/2005/12/051207181144.htm
  2. Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD. High school dietary dairy intake and teenage acne. J Am Acad Dermatol. 2005 Feb;52(2):207-14. At http://www.ncbi.nlm.nih.gov/pubmed/15692464
  3. Adebamowo CA et al. Milk Consumption and Acne in Adolescent Girls. Dermatol Online J.  2006;12(4) At http://dermatology.cdlib.org/124/original/acne/danby.html
  4. Agranoff BW, Goldberg D. Diet and the geographical distribution of multiple sclerosis. Lancet. 1974 Nov 2;2(7888):1061-6
  5. Alexe D, Syridou G, Petridou ET. Determinants of Early Life Leptin Levels and Later Life Degenerative Outcomes. Clin Med Res. 2006;4(4):326–335 At http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1764811
  6. Almås H, Holm H, Aabakken L et al. In vitro digestion of bovine and caprine milks by human gastric enzymes – peptide profiling and antibacterial effects. Avialable at http://milkgenomics.fil-idf-pr.com/Poster15Almaas.pdf
  7. Alvarez VB, Parada-Rabell F. Health Benefits, Risks, and Regulations of Raw and Pasteurized Milk . Available at http://ohioline.osu.edu/fse-fact/pdf/0003.pdf
  8. Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: a meta-analysis. American Journal of Clinical Nutrition 1999;70(4):525-535 At http://www.ajcn.org/cgi/content/full/70/4/525
  9. Atkins PJ. White Poison? The Social Consequences of Milk Consumption, 1850–1930. Social History of Medicine 1992;5(2):207-227 At http://shm.oxfordjournals.org/cgi/content/abstract/5/2/207
  10. Ayele WY. Bovine tuberculosis: an old disease but a new threat to Africa. The International Journal of Tuberculosis and Lung Disease 2004;8(8):924-937(14) At http://docstore.ingenta.com/
  11. Baby growth charts to be revised At http://news.bbc.co.uk/1/hi/health/4938234.stm
  12. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. American Journal of Clinical Nutrition 2002;76(3):675-680. Available at http://www.ajcn.org/cgi/content/full/76/3/675
  13. Bonnet M, Delavaud C, Karine Laud K et al. Mammary leptin synthesis, milk leptin and their putative physiological roles Reprod. Nutr. Dev. 2002;42:399–413 At http://rnd.edpsciences.org/index.php?option=article&access=standard&Itemid=129&url=/articles/rnd/pdf/2002/06/02.pdf
  14. Bonyata K. Average Growth Patterns of Breastfed Babies. At http://www.kellymom.com/babyconcerns/growth/growthcharts.html
  15. Bouret SG, Draper SJ, Simerly RB. Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding. Science 2004a;304(5667):108-110 At http://www.sciencemag.org/cgi/content/abstract/304/5667/108
  16. Bouret SG, Draper SJ, Simerly RB. Formation of Projection Pathways from the Arcuate Nucleus of the Hypothalamus to Hypothalamic Regions Implicated in the Neural Control of Feeding Behavior in Mice. The Journal of Neuroscience 2004b;24(11):2797-2805 At http://www.jneurosci.org/cgi/content/full/24/11/2797
  17. Bouret SG, Simerly RB. Minireview: Leptin and Development of Hypothalamic Feeding Circuits. Endocrinology 2004c;45(6):2621-2626 At http://endo.endojournals.org/cgi/content/full/145/6/2621
  18. Breastfeeding and the Use of Human Milk. Pediatrics 2005;115(2):496-506 At http://aappolicy.aappublications.org/cgi/content/full/pediatrics;115/2/496
  19. Brief History of Cow’s Milk. Available at http://www.milkprocon.org/history.htm
  20. Buehring GC, Philpott SM, Choi KY. Humans have antibodies reactive with Bovine leukemia virus. AIDS Res Hum Retroviruses. 2003;19(12):1105-13 At http://www.ncbi.nlm.nih.gov/sites/entrez
  21. Carson DA. An infectious origin of extraskeletal calcification. Proc Natl Acad Sci. 1998;95(14):7846–7847. At http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=33867
  22. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255-1260 Available at http://www.bmj.com/cgi/content/full/315/7118/1255
  23. Calcium and Bone Disease At http://notmilk.com/deb/092098.html
  24. Casabiell X, Piñeiro V, Tomé MA, Peinó R, Dieguez C, Casanueva FF. Presence of Leptin in Colostrum and/or Breast Milk from Lactating Mothers: A Potential Role in the Regulation of Neonatal Food Intake. The Journal of Clinical Endocrinology & Metabolism 1997;82(12):4270-4273. At http://jcem.endojournals.org/cgi/content/full/82/12/4270
  25. CDC at http://www.cdc.gov/breastfeeding/faq/index.htm
  26. Chan JM, Giovannucci EL. Dairy Products, Calcium, and Vitamin D and Risk of Prostate Cancer. Epidemiol Rev 2001;23(1). At http://epirev.oxfordjournals.org/cgi/reprint/23/1/87
  27. Chandra RK. Five-Year Follow-Up of High-Risk Infants with Family History of Allergy Who Were Exclusively Breast-Fed or Fed Partial Whey Hydrolysate, Soy, and Conventional Cow’s Milk Formulas. Journal of Pediatric Gastroenterology & Nutrition. 1997;24(4):380-388. At http://www.jpgn.org/pt/re/jpgn/abstract
  28. Ciftcioglu N, Pelttari A, Kajander EO. Extraordinary growth phases of nanobacteria isolated from mammalian blood. From Proceedings of SPIE — Volume 3111. Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, Richard B. Hoover, Editor, July 1997, pp. 429-435 At http://spiedl.aip.org/getabs/servlet/GetabsServlet
  29. http://www.cip.ukcentre.com/milk1.htm
  30. Coello-Ramirez P, Larrosa-Haro A. Gastrointestinal occult hemorrhage and gastroduodenitis in cow’s milk protein intolerance. J Pediatr Gastroenterol Nutr. 1984;3(2):215-8. At http://www.ncbi.nlm.nih.gov/sites/entrez
  31. Coker R et al. Risk factors for pulmonary tuberculosis in Russia: case-control study. BMJ  2006;332:85-87 At http://www.bmj.com/cgi/content/full/332/7533/85
  32. Cordain L. Implications for the Role of Diet in Acne At http://thepaleodiet.com/articles/Final%20Acne%20Article.pdf
  33. Cordain L. Dietary Implications for the Development of Acne: A Shifting Paradigm At http://thepaleodiet.com/articles/Cordain%20US%20Dermatology%20Reviews.pdf
  34. Cosivi O et al. Zoonotic Tuberculosis due to Mycobacterium bovis in Developing Countries. Emer Infect Dis 1998;4(1) At http://www.cdc.gov/ncidod/EID/vol4no1/cosivi.htm
  35. Dahl-Jorgensen K, Joner G, Hanssen KF. Relationship between cows’ milk consumption and incidence of IDDM in childhood. Diabetes Care 1991;14(11):1081-1083 At http://care.diabetesjournals.org/cgi/content/abstract/14/11/1081
  36. Dahlquist G, Savilahti E, Landin-Olsson M. An increased level of antibodies to ltoglobulin is a risk determinant for early-onset Type 1 (insulin-dependent) diabetes mellitus independent of islet cell antibodies and early introduction of cow’s milk. Diabetologia. 1992;35(10)  At http://www.springerlink.com/content/t6m3530r57v3wj60/
  37. Dairyforall a At http://www.dairyforall.com/goatmilk-composition.php
  38. Dairyforall b At http://www.dairyforall.com/humanmilk-comp.php
  39. Dairyforall c At http://www.dairyforall.com/composition-of-milk.php
  40. Dairy’s Role in Bone Health Available at http://www.nationaldairycouncil.org/NationalDairyCouncil/Nutrition/Products/DairysRoleinBoneHealth.htm
  41. Davies TW, Palmer CR, Ruja E, Lipscombe JM. Adolescent milk, dairy product and fruit consumption and testicular cancer. Br J Cancer 1996;74:657–60.[Medline]
  42. Dewey KG. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. Biology of the Neonate 1998;74:94-105 Available at http://content.karger.com/
  43. Docena GH, Fernandez R, Chirdo FG, Fossati CA. Identification of casein as the major allergenic and antigenic protein of cow’s milk Allergy 1996;51(6):412–416 At http://www.blackwell-synergy.com/doi/abs/10.1111/j.1398-9995.1996.tb00151.x
  44. Earl BJ, Plewa MC, Dobson JE. Aphthous Ulcers At http://www.emedicine.com/PED/topic2672.htm
  45. El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. Journal of the Society for Gynecologic Investigation 2004;11(3):123-130 At http://rsx.sagepub.com/cgi/content/abstract/11/3/123
  46. Epstein SS. Unlabeled milk from cows treated with biosynthetic growth hormones: a case of regulatory abdication. Int J Health Serv. 1996;26(1):173-85
  47. Ferrer JF, Kenyon SJ, Gupta P. Milk of dairy cows frequently contains a leukemogenic virus. Science 1981;213(4511):1014-1016. At http://www.sciencemag.org/cgi/content/abstract/213/4511/1014
  48. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Milk, dietary calcium, and bone fractures in women: a 12-year prospective study. American Journal of Public Health 1997;87(6):992-997 At http://www.ajph.org/cgi/reprint/87/6/992
  49. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. American Journal of Clinical Nutrition 2003;77(2):504-511. At http://www.ajcn.org/cgi/content/full/77/2/504
  50. Fiorito LM, Mitchell DC, Smiciklas-Wright H, Birch LL. Girls’ Calcium Intake Is Associated with Bone Mineral Content During Middle Childhood. J. Nutr. 2006;136:1281-1286. Available at http://jn.nutrition.org/cgi/content/full/136/5/1281
  51. http://www.foodsci.uoguelph.ca/dairyedu/intro.html
  52. Forget P, Arends JW. Cow’s milk protein allergy and gastro-oesophageal reflux. European Journal of Pediatrics 1985;144(4) At http://www.springerlink.com/content/r03113231q411126/
  53. Ganmaa D, Wang PY, Qin LQ, Hoshi K, Sato A. Is milk responsible for male reproductive disorders? Medical Hypotheses 2001;57:510-4. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/malerisk.html
  54. Ganmaa D, Li XM, Wang J, Qin LQ, Wang PY, Sato A. Incidence and Mortality of Testicular and Prostatic Cancers in Relation to World Dietary Practices. International Journal of Cancer 2002;98:262-7. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/IJCTP.html
  55. Ganmaa D, Li XM, Qin LQ, Wang PY, Takeda M, Sato A. The Experience of Japan as a Clue to the Etiology of Testicular and Prostatic Cancers. Medical Hypotheses 2003;60:724-30. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/JapExp.html
  56. Ganmaa D, Sato A. The Possible Role of Female Sex Hormones in Milk from Pregnant Cows in the Development of Breast, Ovarian and Corpus Uteri Cancers. Medical Hypotheses 2005;65(6):1028-37. http://www.eps1.comlink.ne.jp/~mayus/eng/femalecancer.html
  57. Garner MJ, Birkett NJ, Johnson KC, Shatenstein B, Ghadirian P, Kreswski D. Dietary risk factors for testicular carcinoma. Int J Cancer 2003;106:934–41.[Medline]
  58. Gerstein HC. Cow’s milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care. 1994;17(1):13-19 At http://care.diabetesjournals.org/cgi/content/abstract/17/1/13
  59. Gimeno SG,  de Souza JM. IDDM and milk consumption. A case-control study in Sao Paulo, Brazil. Diabetes Care 1997;20(8):1256-1260 At http://care.diabetesjournals.org/cgi/content/abstract/20/8/1256
  60. Glassman MS, Newman LJ, Berezin S, Gryboski JD. Cow’s milk protein sensitivity during infancy in patients with inflammatory bowel disease. Am J Gastroenterol. 1990;85(7):838-40. At http://www.ncbi.nlm.nih.gov/sites/entrez
  61. Goldfarb DS, Coe FL. Prevention of Recurrent Nephrolithiasis. American Family Physician 1999;60(8) At http://newcms.aafp.org/afp/991115ap/2269.html
  62. Got Osteoporosis from Milk? At http://milk.elehost.com/html/osteoporosis.html
  63. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: A life history and evolutionary perspective. American Journal of Human Biology. 2006;19(1):1-19 At http://www3.interscience.wiley.com/cgi-bin/abstract/113509381/ABSTRACT?CRETRY=1&SRETRY=0
  64. Grosvenor CE, Picciano MF, Buamrucker CR. Hormones and Growth Factors in Milk. Endocrine Reviews. 1993;14():710-728 Available at At http://edrv.endojournals.org/cgi/reprint/14/6/710
  65. Gupta A. Initiating breastfeeding within one hour of birth: A scientific brief. At http://www.bpni.org/Article/Initiating_breastfeeding_within_one_hour.pdf
  66. Gunderson EP. Breastfeeding After Gestational Diabetes Pregnancy, Subsequent obesity and type 2 diabetes in women and their offspring Diabetes Care 2007;30:S161-S168 At http://care.diabetesjournals.org/cgi/content/full/30/Supplement_2/S161
  67. Haas F. Effect of milk ingestion on pulmonary function in healthy and asthmatic subjects. J Asthma. 1991;28(5):349-55. At http://www.ncbi.nlm.nih.gov/sites/entrez
  68. Hamosh M. Breastfeeding: Unraveling the Mysteries of Mother’s Milk Medscape General Medicine. Posted 09/15/1996 Available at http://www.medscape.com/viewarticle/408813_1
  69. Hawkes N. Mothers who switched from breast to bottle ‘were misled’. Available at http://www.timesonline.co.uk/tol/life_and_style/health/article1857052.ece
  70. Health Effects of Cows’ Milk. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/
  71. Hoppe C, Mølgaard C, Michaelsen KF. Cow’s Milk and Linear Growth in Industrialized and Developing Countries. Annual Review of Nutrition. 2006;26:131-173. Available at http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nutr.26.010506.103757
  72. Hoshimoto K, Ohkura T. Vascular endothelial growth factor in human milk. British Journal of Biomedical Science. 2000. Available at http://findarticles.com/p/articles/mi_qa3874/is_200001/ai_n8888572
  73. Høst A. Cow’s milk protein allergy and intolerance in infancy. Some clinical, epidemiological and immunological aspects. Pediatr Allergy Immunol. 1994;5(5 Suppl):1-36 At http://www.ncbi.nlm.nih.gov/sites/entrez
  74. Iacono G et al. Gastroesophageal reflux and cow’s milk allergy in infants: a prospective study. J Allergy Clin Immunol. 1996;97(3):822-7 At http://www.ncbi.nlm.nih.gov/sites/entrez
  75. Iacono G. Intolerance of cow’s milk and chronic constipation in children. N Engl J Med. 1998;339(16):1100-4 At http://www.ncbi.nlm.nih.gov/sites/entrez
  76. Jakobsson I, Lindberg ST. Cow’s milk as a cause of infantile colic in breast-fed infants. Lancet. 1978;2(8087):437-9
  77. Juntti H, Tikkanen S, Kokkonen J, Alho O, Äki AN. Cow’s Milk Allergy is Associated with Recurrent Otitis Media During Childhood. Acta Oto-Laryngologica 1999;119(8):867 – 873 At http://www.informaworld.com/smpp/content~content=a713792025~db=all
  78. Kajander EO et al. Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth At http://www.nanobac.fi/Klin%20lab/Abs_autonomously.pdf
  79. Kajander EO, Çiftçioglu N. Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci 1998;95(14):8274-8279 At http://www.pnas.org/cgi/content/full/95/14/8274
  80. Kanis JA et al. A meta-analysis of milk intake and fracture risk: low utility for case finding Osteoporosis International 2005;16(7):799-804 At http://www.springerlink.com/content/hnanbfeck22fdpd7/
  81. Karjalainen J et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus NEJM 1992;327(5):302-307 At http://content.nejm.org/cgi/content/abstract/327/5/302
  82. Kritchevsky D. Dietary Protein, Cholesterol and Atherosclerosis: A Review of the Early History. Journal of Nutrition 1995;125(3_Suppl):589-593. At http://jn.nutrition.org/cgi/reprint/125/3_Suppl/589S
  83. Kitazawa H, Yonezawa K, Tohno M et al. Enzymatic digestion of the milk protein beta-casein releases potent chemotactic peptide(s) for monocytes and macrophages. Int Immunopharmacol. 2007 Sep;7(9):1150-9.
  84. Knoflach P, Park BH, Cunningham R, Weiser MM, Albini B. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease. Gastroenterology. 1987;92(2):479-85. At http://www.ncbi.nlm.nih.gov/sites/entrez
  85. Kokkonen J, Similä S, Herva R. Impaired gastric function in children with cow’s milk intolerance European Journal of Pediatrics. 1979;132(1) At http://www.springerlink.com/content/j22587w6146h2008/
  86. Kokkonen J, Haapalahti M, Laurila K, Karttunen TJ, Mäki M. Cow’s milk protein-sensitive enteropathy at school age. J Pediatr. 2001;139(6):797-803 At http://www.ncbi.nlm.nih.gov/sites/entrez
  87. Kradjian RK. The milk letter: A message to my patients. http://www.notmilk.com/kradjian.html
  88. Lanou AJ, Berkow SE, Barnard ND. Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence Pediatrics 2005;115(3):736-743 http://pediatrics.aappublications.org/cgi/content/full/115/3/736
  89. Lara-Villoslada, Olivares M, Xaus J. The Balance Between Caseins and Whey Proteins in Cow’s Milk Determines its Allergenicity. J. Dairy Sci. 2000;88:1654-1660 At http://jds.fass.org/cgi/content/full/88/5/1654
  90. Larsen HR. Milk and the Cancer Connection. Available at http://www.vvv.com/healthnews/milk.html
  91. Leite CQF et al. Isolation and identification of mycobacteria from livestock specimens and milk obtained in Brazil. Mem. Inst. Oswaldo Cruz 2003;98(3) At http://www.scielo.br/scielo.php
  92. Li D, Ganmaa D, Sato A. The Experience of Japan as a Clue to the Etiology of Breast and Ovarian Cancers: Relationship between Death from Both Malignancies and Dietary Practices. Medical Hypotheses 2003;60:268-75. Available at http://www.eps1.comlink.ne.jp/~mayus/lifestyle2/JapanExpBO.html
  93. Lifschitz C, Hawkins HK, Guerra C, Byrd N. Anaphylactic shock due to cow’s milk protein hypersensitivity in a breast-fed infant. J-Pediatr-Gastroenterol-Nutr. 1988;7(1):141-4 At http://grande.nal.usda.gov/ibids/index.php
  94. Lorenz M et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219-23. Epub 2007 Jan 9. At http://eurheartj.oxfordjournals.org/cgi/content/abstract/ehl442v1
  95. Lothe L, Lindberg T. Cow’s Milk Whey Protein Elicits Symptoms of Infantile Colic in Colicky Formula-Fed Infants: A Double-Blind Crossover Study. Pediatrics 1989;83(2):262-266 At http://pediatrics.aappublications.org/cgi/content/abstract/83/2/262
  96. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992;339(8788):261-4
  97. Mantzoros CS. The Role of Leptin in Human Obesity and Disease: A Review of Current Evidence. At http://www.annals.org/cgi/reprint/130/8/671.pdf
  98. Masatoshi Matsumoto et al. Consumption of Dairy Products and Cancer Risks J Epidemiol 2007;17:38-44. At http://www.jstage.jst.go.jp/article/jea/17/2/17_38/_article
  99. McDougall JA. Treating Multiple Sclerosis with Diet: Fact or Fraud? Available at http://www.pcrm.org/health/Preventive_Medicine/multiple_sclerosis.html
  100. Mettlin C. Milk drinking, other beverage habits, and lung cancer risk. Int J Cancer. 1989;43(4):608-12. At http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=268628
  101. Mettlin CJ. Invited commentary: progress in the nutritional epidemiology of ovary cancer. Am J Epidemiol. 1991;134(5):457-9; discussion 460-1 At http://www.ncbi.nlm.nih.gov/sites/entrez
  102. Miller VM et al. Evidence of nanobacterial-like structures in calcified human arteries and cardiac valves. Am J Physiol Heart Circ Physiol 2004;287:H1115-H1124 At http://ajpheart.physiology.org/cgi/content/full/287/3/H1115
  103. Milk Causes Cancer Too At http://www.13.waisays.com/cancer2.htm
  104. Milk Protein At http://www.milkfacts.info/Milk%20Composition/protein.htm
  105. Miralles O, Sánchez J, Palou A, Picó C. A Physiological Role of Breast Milk Leptin in Body Weight Control in Developing Infants. Obesity 2006;14:1371-1377 At http://www.obesityresearch.org/cgi/content/full/14/8/1371
  106. Moissidis et al. Milk-induced pulmonary disease in infants (Heiner syndrome). Case Report. Pediatric Allergy & Immunology. 2005;16(6):545-552. At http://pt.wkhealth.com/pt/re/pall/abstract
  107. Morley R, Cole TJ, Powell R, Lucas A. Mother’s choice to provide breast milk and developmental outcome. Arch Dis Child. 1988;63(11):1382-5.
  108. Niec AM, Frankum B, Talley NJ. Are adverse food reactions linked to irritable bowel syndrome? The American Journal of Gastroenterology 1998;93(11):2184–2190. At http://www.blackwell-synergy.com/doi/abs/10.1111/j.1572-0241.1998.00531.x
  109. Nielsen RG, Bindslev-Jensen C, Kruse-Andersen S, Husby S. Severe gastroesophageal reflux disease and cow milk hypersensitivity in infants and children: disease association and evaluation of a new challenge procedure. Journal of Pediatric Gastroenterology and Nutrition 2004;39(4):383-391 At http://www.cababstractsplus.org/google/abstract.asp
  110. Okada T. Effect of cow milk consumption on longitudinal height gain in children. American Journal of Clinical Nutrition 2004;80(4):1088-1089 Available at http://www.ajcn.org/cgi/content/full/80/4/1088-a
  111. Onis MD. Acta Pædiatrica 2006;450:5-6 Available at http://www.who.int/childgrowth/standards/Foreword.pdf
  112. Oransky I. What’s in your milk? The hypothesis: Hormones and growth factors in dairy increase cancer risk. The Scientist 21;2(34) Available at http://www.the-scientist.com/article/home/43585/
  113. Oski FA. Is Bovine Milk a Health Hazard? Pediatrics 1985;75: 182-186. Abstract
  114. Palmer LF. The Dangers of Cow’s Milk. http://www.naturalchild.org/guest/linda_folden_palmer.html
  115. Pande TK et al. Primary lingual tuberculosis caused by M. bovis infection. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1995;80(2):172-174 At http://www.sciencedirect.com/science
  116. Pangborn RM, Bos KE, Stern JS. Dietary fat intake and taste responses to fat in milk by under-, normal, and overweight women. Appetite. 1985;6(1):25-40. At http://www.ncbi.nlm.nih.gov/sites/entrez
  117. Park SY, Murphy SP, Wilkens LR, Stram DO, Henderson BE, Kolonel N. Calcium, Vitamin D, and Dairy Product Intake and Prostate Cancer Risk: The Multiethnic Cohort Study American Journal of Epidemiology 2007 166(11):1259-1269. Available at http://aje.oxfordjournals.org/cgi/content/abstract/166/11/1259
  118. Park Y, Mitrou PN, Kipnis V, Hollenbeck A, Schatzkin A, Leitzmann MF. Calcium, Dairy Foods, and Risk of Incident and Fatal Prostate Cancer-The NIH-AARP Diet and Health Study. American Journal of Epidemiology 2007 166(11):1270-1279. Available at http://aje.oxfordjournals.org/cgi/content/abstract/166/11/1270
  119. PCRM: Milk- America’s Health Problem. Available at http://www.preventcancer.com/consumers/general/milk.htm
  120. Pico´ C, Sa´nchez J, Oliver P, Miralles O, Ceresi E, Palou A. Role of leptin present in maternal milk in the control of energy balance during the post-natal period. Genes Nutr 2007;2:139–141 At http://www.springerlink.com/content/3609812807664303/fulltext.pdf
  121. Pittschieler K. Cow’s milk protein-induced colitis in the breast-fed infant J Pediatr Gastroenterol Nutr. 1990;10(4):548-9
  122. Qin LQ et al. Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies. Nutr Cancer. 2004;48(1):22-7. At http://www.ncbi.nlm.nih.gov/sites/entrez
  123. Ram FSF. Cow’s milk protein avoidance and development of childhood wheeze in children with a family history of atopy. At http://www.medscape.com/viewarticle/486796
  124. Real Milk: Abstracts on the Effect of Pasteurization on the Nutritional Value of Milk. Available at http://www.realmilk.com/abstractsmilk.html
  125. Rees L. Healthy digestion in infants. SA Pharmacist’s Assistant July / august 2005. Available at http://www.sapajournal.co.za/index.php/SAPA/article/viewFile/31/26
  126. Rich-Edwards JW, Ganmaa D, Pollak MN et al. Milk consumption and the prepubertal somatotropic axis. Nutrition Journal 2007;6:28 Available at http://www.nutritionj.com/content/6/1/28
  127. Rollinger M. History of milk At http://www.eps1.comlink.ne.jp/~mayus/eng/MariaEng.pdf
  128. Rose DP, Boyar AP, Wynder EL. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer. 1986;58(11):2363-71. At http://www.ncbi.nlm.nih.gov/sites/entrez
  129. Rytkönen J. Effect of heat denaturation of bovine milk beta-lactoglobulin on its epithelial transport and allergenicity. Acta Univ. Oul. D 883, 2006. AvAilable at http://herkules.oulu.fi/isbn9514281209/isbn9514281209.pdf
  130. http://www.saanendoah.com/compare.html
  131. Salimei E, Varisco G, Rosi F. Major constituents, leptin, and non-protein nitrogen compounds in mares’ colostrum and milk Reprod. Nutr. Dev. 2002;42:65–72 65 At http://rnd.edpsciences.org/index.php?option=article&access=standard&Itemid=129&url=/articles/rnd/pdf/2002/02/Salimei.pdf
  132. Salvatore S, Vandenplas Y. Gastroesophageal reflux and cow milk allergy: is there a link? Pediatrics. 2002;110(5):972-84. At http://pediatrics.aappublications.org/cgi/content/full/110/5/972
  133. Samuelsson SM, Ekbom A, Zack M, Helmick CG, Adami HO. Risk factors for extensive ulcerative colitis and ulcerative proctitis: a population based case-control study. Gut. 1991;32(12):1526–1530. At http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1379255&blobtype=pdf
  134. Sato A, Ganmaa D. Hormonal effects of cows’ milk on human health. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/Bostonmilk.pdf
  135. Savilahti E, Saukkonen TT, Virtala ET, Tuomilehto J, Akerblom HK. Increased levels of cow’s milk and beta-lactoglobulin antibodies in young children with newly diagnosed IDDM. The Childhood Diabetes in Finland Study Group Diabetes Care 1993;16(7):984-989 At http://care.diabetesjournals.org/cgi/content/abstract/16/7/984
  136. Savilahti E, Akerblom HK, Tainio VM, Koskimies S. Children with newly diagnosed insulin dependent diabetes mellitus have increased levels of cow’s milk antibodies. Diabetes Res. 1988;7(3):137-40.
  137. Schrezenmeir J, Jagla A. Milk and Diabetes Journal of the American College of Nutrition 2000;19(90002):176S-190S. At http://www.jacn.org/cgi/content/full/19/suppl_2/176S
  138. Scott FW. Cow milk and insulin-dependent diabetes mellitus: is there a relationship? American Journal of Clinical Nutrition 1990;51:489-491 At http://www.ajcn.org/cgi/reprint/51/3/489
  139. Sigurdson AJ, Chang S, Annegers JF, et al. A case-control study of diet and testicular carcinoma. Nutr Cancer 1999;34:20–6.[Medline]
  140. Simon H. Multiple sclerosis. Available at http://www.umm.edu/patiented/articles/who_gets_multiple_sclerosis_000017_5.htm
  141. Stang A, Ahrens W, Baumgardt-Elms C et al. Adolescent Milk Fat and Galactose Consumption and Testicular Germ Cell Cancer Cancer Epidemiology Biomarkers & Prevention 2006;15:2189-2195. Available at http://cebp.aacrjournals.org/cgi/content/full/15/11/2189#TBL4
  142. Stengler M. Cow’s Milk–A Cautionary Tale Available At http://www.alive.com/1855a5a2.php?subject_bread_cramb=455
  143. Steppan CM, Swick AG. A Role for Leptin in Brain Development. Biochemical and Biophysical Research Communications 1999;256(3):600-602. At http://www.sciencedirect.com/science
  144. Stewart A. Hormones in Milk Are Linked to Cancer. March 2004. Available at http://www.consumerhealthjournal.com/articles/milk-and-cancer.html
  145. Studies Find Milk Consumption, Use of HRT, and Pregnancy May Influence Hormone Levels Associated With Cancer Risk in Women. Available at http://www.hms.harvard.edu/news/pressreleases/bwh/0902milkconsumption.html
  146. Summary-The Early Feeds: Human Milk Versus Formula and Bovine Milk. Pediatrics 1985;75:157-159. Available at http://pediatrics.aappublications.org/cgi/gca
  147. Tacket CO et al. A multistate outbreak of infections caused by Yersinia enterocolitica transmitted by pasteurized milk. JAMA 1984;251(4):483 At http://jama.ama-assn.org/cgi/content/abstract/251/4/483
  148. Tailford KA, Berry CL, Thomas AC, Campbel JH. A casein variant in cow’s milk is atherogenic. Atherosclerosis 2003;170(1):13-19. Abstract
  149. Taylor KB, Truelove SC. Circulating antibodies to milk proteins in ulcerative colitis. Br Med J. 1961;2(5257):924–929. At http://www.pubmedcentral.nih.gov/pagerender.fcgi?artid=1969927&pageindex=1
  150. Truelove SC. Ulcerative Colitis Provoked by Milk. Br Med J. 1961;1(5220):154–160. At http://www.pubmedcentral.nih.gov/pagerender.fcgi
  151. Uauy R, Peirano P. Breast is best: human milk is the optimal food for brain development. American Journal of Clinical Nutrition 1999;70(4):433-434 At http://www.ajcn.org/cgi/content/full/70/4/433
  152. Ursin G, Bjelke E, Heuch I, Vollset SE. Milk consumption and cancer incidence: a Norwegian prospective study. Br J Cancer. 1990;61(3):454-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  153. Vernia P, Di Camillo M, Marinaro V. Lactose malabsorption, irritable bowel syndrome and self-reported milk intolerance. Dig Liver Dis. 2001;33(3):234-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  154. Vernia P et al. Self-reported milk intolerance in irritable bowel syndrome: what should we believe? Clinical Nutrition 2004;23(5):996-1000. At http://www.sciencedirect.com/science
  155. Vernia P, Ricciardi MR, Frandina C, Bilotta T, Frieri G. Lactose malabsorption and irritable bowel syndrome. Effect of a long-term lactose-free diet. Ital J Gastroenterol. 1995;27(3):117-21. At http://www.ncbi.nlm.nih.gov/sites/entrez
  156. Virtanen SM et al. Diet, cow’s milk protein antibodies and the risk of IDDM in Finnish children. Diabetologia. 1994;37(4) At http://www.springerlink.com/content/u1n2065465162043/
  157. Vitoria JC et al. Cow’s milk protein-sensitive enteropathy. Clinical and histological results of the cow’s milk provocation test. Helv Paediatr Acta. 1979;34(4):309-18 At http://www.ncbi.nlm.nih.gov/sites/entrez
  158. Ward MH et al. Dietary factors and non-Hodgkin’s lymphoma in Nebraska (United States). Cancer Causes Control. 1994;5(5):422-32. At http://www.ncbi.nlm.nih.gov/sites/entrez
  159. Wasmuth HE, Kolb H. Cow’s milk and immune-mediated diabetes. Proc Nutr Soc. 2000;59(4):573-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  160. Weinsier RL, Krumdieck CL. Dairy foods and bone health: examination of the evidence American Journal of Clinical Nutrition 2000;72(3):681-689. Available at http://www.ajcn.org/cgi/content/full/72/3/681
  161. WHO At http://who.int/topics/breastfeeding/en/
  162. WHO revises outdated baby growth charts At http://www.ctv.ca/servlet/ArticleNews/story/
  163. Wiley AS. Does Milk Make Children Grow? Relationships Between Milk Consumption and Height in NHANES 1999–2002. Am J Hum Biol 2005;17:425–441. Available at http://people.jmu.edu/wileyas/website%20materials/DoesMilkMakeChildrenGrow.pdf
  164. Willetts IE, Dalzell M, Puntis JW, Stringer MD. Cow’s milk enteropathy: surgical pitfalls. J Pediatr Surg. 1999;34(10):1486-8 At http://www.ncbi.nlm.nih.gov/sites/entrez
  165. Woo J, Lau W, Xu L et al. Milk Supplementation and Bone Health in Young Adult Chinese Women. Journal of Women’s Health. 2007;16(5): 692-702 Available at http://www.liebertonline.com/doi/abs/10.1089/jwh.2006.0222
  166. Woo SB, Sonis ST. Recurrent aphthous ulcers: A review of diagnosis and treatment JADA 1996;127:1202 At http://jada.ada.org/cgi/reprint/127/8/1202
  167. Xiang M et al. Long-chain polyunsaturated fatty acids in human milk and brain growth during early infancy. Acta Paediatrica 2000;89(2):142–147. Available at http://www.blackwell-synergy.com/doi/abs/10.1111/j.1651-2227.2000.tb01206.x
  168. Zbigniew Kwias et al. Effect of environment on the development of nephrolithiasis. Urologia Polska 1979;32(4) At http://www.urologiapolska.pl/artykul.php?305&lang=en&print=1
  169. Zheng T. Diet and Nutrient Intakes and Risk of Non-Hodgkin’s Lymphoma in Connecticut Women Am J Epidemiol 2004;159:454-466. At http://aje.oxfordjournals.org/cgi/content/full/159/5/454

ಪಶು ಹಾಲಿನ ಪಾನ, ರೋಗಗಳಿಗೆ ಆಹ್ವಾನ

ಹಾಲಿನ ಬಗ್ಗೆ ಕೆಟ್ಟದ್ದನ್ನು ಹೇಳಿದರೆ ಒಪ್ಪುವವರ ಸಂಖ್ಯೆಯು ಅತಿ ವಿರಳ. ಮನುಷ್ಯನ ಜೀವನದೊಂದಿಗೆ ಬಹಳ ಭಾವನಾತ್ಮಕವಾಗಿ ಬೆರೆತಿರುವ ‘ಆಹಾರ’ವೆಂದರೆ ಹಾಲು. ಹುಟ್ಟಿದ ಘಳಿಗೆಯಿಂದ ಕೊನೆಯ ತನಕ ಮನುಷ್ಯನು ಸೇವಿಸುವ ‘ಆಹಾರ’ವೊಂದಿದ್ದರೆ ಅದು ಹಾಲೇ ಅಲ್ಲವೆ? ಶತ-ಶತಮಾನಗಳಿಂದ ಮನುಷ್ಯನು ಕುಡಿಯುತ್ತಿರುವ ಈ ಹಾಲು ಅಮೃತವಲ್ಲವೇ?

ಹೌದೆ?

ಹಾಲು ಒಂದು ಅತ್ಯುತ್ಕೃಷ್ಟವಾದ, ಸಂಪೂರ್ಣವಾದ ಆಹಾರ. ಖಂಡಿತವಾಗಿಯೂ ಹೌದು. ತಾಯಿಯ ಹಾಲು ಆಕೆಯ ಮಗುವಿನ ಪಾಲಿಗೆ ಅತ್ಯುತ್ಕೃಷ್ಟವಾದ, ಸಂಪೂರ್ಣವಾದ ಆಹಾರ, ಅಷ್ಟೆ.[Hamosh M, 1996] ಆಯಾ ಸಸ್ತನಿಯ ಹಾಲು ಅದರ ಸಂತಾನಕ್ಕಷ್ಟೇ ಸೀಮಿತವಾದ ವಿಶಿಷ್ಟ ಆಹಾರವೆನ್ನುವುದು ನಿಸರ್ಗದ ಸತ್ಯ.[Kradijan RK] ತನ್ನ ಮಗುವಿಗೆ ಹಾಲೂಡಿಸುವುದು ಹೇಗೆ ತಾಯಿಯ ಸೌಭಾಗ್ಯವೋ, ಅದನ್ನು ತಾಯಿಯಿಂದ ಪಡೆಯುವುದು ಆ ಮಗುವಿನ ಜನ್ಮಸಿದ್ಧವಾದ ಹಕ್ಕೂ ಹೌದು. ಹೇಗೆ ತಾಯಿಯೋರ್ವಳು ಅನ್ಯಳ ಮಗುವಿಗೆ ಹಾಲೂಡಿಸಲಾರಳೋ, ಹಾಗೆಯೇ ಬೇರೆ ಯಾವುದೇ ಹಾಲು ಆ ಮಗುವಿಗೆ ಆಹಾರವೂ ಅಲ್ಲ, ಮಗುವಿಗೆ (ಅಥವಾ ಮಗುವಾಗಿರದೆ ದೊಡ್ಡದಾಗಿ ಬೆಳೆದಿರುವವರಿಗೆ) ಅದರ ಅಗತ್ಯವೂ ಇಲ್ಲ. ಶೈಶವಾವಸ್ಥೆಯ ಬಳಿಕ ಹಾಲನ್ನು ಕುಡಿಯುವುದರಿಂದ ಒಂದೆಡೆ ದೇಹಕ್ಕೆ ಅಗತ್ಯವಾದ ಎಲ್ಲಾ ಪೌಷ್ಟಿಕಾಂಶಗಳ ಪೂರೈಕೆಯಾಗುವುದಿಲ್ಲ, ಇನ್ನೊಂದೆಡೆ ಹಾಲನ್ನು ಸೇವಿಸುತ್ತಿದ್ದೇವಲ್ಲಾ ಎಂಬ ಭ್ರಮೆಯಲ್ಲಿ ಇತರ ಆಹಾರಗಳ ಸೇವನೆಯು ಕಡಿತಗೊಂಡು ನ್ಯೂನಪೋಷಣೆಗೂ ಕಾರಣವಾಗಬಹುದು.[Palmer LF] ಒಟ್ಟಿನಲ್ಲಿ, ಅನ್ಯ ಪ್ರಾಣಿಯ ಹಾಲನ್ನು ಕುಡಿಯುವುದೆಂದರೆ ತಾಯ್ತನಕ್ಕೆ ಮಾಡುವ ಅಪಮಾನವೆಂದೇ ಹೇಳಬಹುದು; ಮಾತ್ರವಲ್ಲ, ಅದರಿಂದಾಗಿ ಹಲವು ತೊಂದರೆಗಳನ್ನು ಎದುರಿಸಬೇಕಾಗಬಹುದು.

ತಾಯಿಯ ಹಾಲನ್ನು ಕುಡಿಯುವ ವಯಸ್ಸು ಮೀರಿದಂತೆ, ನಮ್ಮ ಕರುಳಿನಲ್ಲಿ ಹಾಲನ್ನು ಜೀರ್ಣಿಸುವ ಸಾಮರ್ಥ್ಯವೂ ನಿಧಾನವಾಗಿ ಕಡಿಮೆಯಾಗುತ್ತದೆ, ಅದು ಪ್ರಕೃತಿ ನಿಯಮ.[Rees L] ನಮ್ಮ ದೇಹದಲ್ಲಿ ವಯಸ್ಸಿಗನುಗುಣವಾಗಿ ಉಂಟಾಗುವ ಹಲವಾರು ಬದಲಾವಣೆಗಳಲ್ಲಿ ಇದೂ ಒಂದು. ನಾವು ಬೆಳೆದಂತೆ, ಯಾವುದು ಅಗತ್ಯವೋ ಅದು ಮೂಡುತ್ತದೆ, ಯಾವುದರ ಅಗತ್ಯವು ಇನ್ನಿಲ್ಲವೋ, ಅದು ಕ್ಷೀಣಿಸಿ ಮಾಯವಾಗುತ್ತದೆ. ಕರುಳಿನಲ್ಲಿ ಹಾಲನ್ನು ಜೀರ್ಣಿಸುವ ಕಿಣ್ವಗಳೂ ವಯಸ್ಸಾದಂತೆ ದುರ್ಬಲಗೊಂಡು ಮರೆಯಾಗುತ್ತವೆ. ಹಾಗಿರುವಾಗ, ಹಾಲನ್ನು ಕುಡಿಯುವ ವಯಸ್ಸು ಮೀರಿದ ಬಳಿಕವೂ ಅದನ್ನು ಕುಡಿಯುತ್ತಿದ್ದರೆ, ಅದು ಸರಿಯಾಗಿ ಪಚನಗೊಳ್ಳದೆ, ಬೇಕಾದದ್ದು ಹೀರಲ್ಪಡದೆ, ಬೇಡವಾದದ್ದು ಹೀರಲ್ಪಡುವ ಸಾಧ್ಯತೆಗಳು ಸಾಕಷ್ಟು.[Almås H] ಹೀಗಾಗಿ, ಬೆಳೆಯುವ ಮಗುವಿಗೆ ತಾಯಿಯ ಹಾಲು ಅಮೃತವಾದರೆ, ವಯಸ್ಸಾದವರ ಪಾಲಿಗೆ ಪಶುವಿನ ಹಾಲು ಹಾಲಾಹಲವಾಗಬಹುದು.

ಹಾಗಂದೊಡನೆ, ‘ಹಿರಿಯರೆಲ್ಲರೂ ಹಾಲನ್ನು ಯಥೇಷ್ಟವಾಗಿ ಕುಡಿಯುತ್ತಿರಲಿಲ್ಲವೇ?’ ಎಂದು ಆಕ್ಷೇಪಿಸುವವರು ಬಹಳಷ್ಟಿದ್ದಾರೆ. ಆದರೆ ನಿಜ ಸಂಗತಿಯೇನು? ಮನುಷ್ಯನು ಆಕಳ ಹಾಲನ್ನು ‘ಅನಾದಿ ಕಾಲದಿಂದಲೇ’ ಕುಡಿಯುತ್ತಿರಲಿಲ್ಲ, ಅದರ ಬಳಕೆ ಆರಂಭಗೊಂಡದ್ದು ಸುಮಾರು ಏಳೆಂಟು ಸಾವಿರ ವರ್ಷಗಳ ಹಿಂದಷ್ಟೇ. ಸುಮಾರು ನೂರೈವತ್ತು ವರ್ಷಗಳ ಹಿಂದಿನವರೆಗೂ ಆಕಳ ಹಾಲನ್ನು ನೇರವಾಗಿ ಕುಡಿಯುತ್ತಿದ್ದುದು ಕಡಿಮೆಯೇ, ಅದನ್ನು ಹಚ್ಚಾಗಿ ಬೆಣ್ಣೆ ಮತ್ತು ಗಿಣ್ಣುಗಳನ್ನು ತಯಾರಿಸಲಿಕ್ಕೆಂದು ಬಳಸಲಾಗುತ್ತಿತ್ತಷ್ಟೇ.[Rollinger M] ಹಾಲು ನಮ್ಮ ಆಹಾರದ ಅವಿಭಾಜ್ಯ ಅಂಗವಾಗಿ ಬಿಟ್ಟದ್ದು ತೀರಾ ಇತ್ತೀಚೆಗಷ್ಟೇ.  ಪ್ಯಾಶ್ಚೀಕರಣ, ಮೇದಸ್ಸಿನ ಪ್ರತ್ಯೇಕಿಸುವಿಕೆ, ಅದಾಗಿ ಉಳಿದ ದ್ರಾವಣವನ್ನು ಬಲವಂತದಿಂದ ಮಿಶ್ರಣ ಮಾಡುವುದು (homogenization) ಇವೇ ಮುಂತಾದ ತಂತ್ರಜ್ಞಾನಗಳನ್ನು ಕಳೆದ ನೂರು ವರ್ಷಗಳಲ್ಲಿ ಅಭಿವೃದ್ಧಿ ಪಡಿಸಲಾಗಿದೆ.[Brief History] ಇಂದು ‘ಹಾಲು’ ಎಂದು ಮಾರಲ್ಪಡುತ್ತಿರುವ ದ್ರಾವಣಕ್ಕೂ, ಎಂಭತ್ತರಿಂದ ನೂರು ವರ್ಷಗಳ ಹಿಂದೆ ಮನುಷ್ಯರು ಬಳಸುತ್ತಿದ್ದ ಆಕಳ ಹಾಲಿಗೂ ಬಹಳಷ್ಟು ವ್ಯತ್ಯಾಸಗಳಿರುವುದು ನಿಜವಾದರೂ, ಹೀಗೆ ಸಂಸ್ಕರಿತಗೊಂಡು  ತನ್ನ ನಿಸರ್ಗ ಸಹಜತೆಯನ್ನು ಕಳೆದುಕೊಂಡಿರುವ ‘ಹಾಲು’ ಮತ್ತದರ ಉತ್ಪನ್ನಗಳು ಮನುಷ್ಯನಿಗೆ ಅತ್ಯಗತ್ಯವೆಂದೂ, ಅವು ತಾಯಿಯ ಹಾಲಿನಷ್ಟೇ ಅಥವಾ ಅದಕ್ಕಿಂತಲೂ ಉತ್ತಮವೆಂದೂ ಬಿಂಬಿಸಲಾಗುತ್ತಿದೆ ಮತ್ತು ಈಗ ಹಾಲಿನ ಬಳಕೆಯು ಒಂದು ಅತಿ ದೊಡ್ಡ ಉದ್ಯಮವಾಗಿ ಬೆಳೆದಿದೆ.

ಹಾಲಿನಲ್ಲಿ ಲ್ಯಾಕ್ಟೋಸ್ ಎಂಬ ಸಕ್ಕರೆ, ಹಲವು ತರಹದ ಮೇದಸ್ಸು, ಪ್ರೊಟೀನುಗಳು, ಖನಿಜಗಳು ಇವೇ ಮುಂತಾದ ಪೌಷ್ಟಿಕಾಂಶಗಳು ನಿರ್ದಿಷ್ಟವಾದ ಅನುಪಾತದಲ್ಲಿ ಸಮ್ಮಿಶ್ರಣಗೊಂಡಿರುತ್ತವೆ ಮತ್ತು ಇವುಗಳ ಪ್ರಮಾಣವು ಶಿಶುವಿನ ಅಗತ್ಯಗಳಿಗನುಗುಣವಾಗಿ ಪ್ರತಿಯೊಂದು ಸಸ್ತನಿಯಲ್ಲಿಯೂ ಭಿನ್ನವಾಗಿರುತ್ತವೆ. ಅಂತಹಾ ಹಾಲಿನಿಂದ ಕೆನೆಯನ್ನು ತೆಗೆದಾಗ ಈ ಆಹಾರಾಂಶಗಳ ನಿಸರ್ಗಸಹಜವಾದ ಅನುಪಾತವು ಬದಲಾಗಿ, ಅದು ಕೇವಲ ಪ್ರೊಟೀನುಗಳು  ಮತ್ತು ಕ್ಯಾಲ್ಸಿಯಂ ಪ್ರಮಾಣವೇ ಹೆಚ್ಚಾಗಿರುವ ಬೆಳ್ಳಗಿನ ಪ್ರಾಣಿಜನ್ಯ ದ್ರಾವಣವಾಗಿ ಬಿಡುತ್ತದೆ, ಅಷ್ಟೆ! ಅಲ್ಲದೆ, ಪಶುಗಳ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳು ಮನುಷ್ಯನ ಶರೀರಕ್ಕೆ ಒಗ್ಗದೇ ಹಲವು ತರಹದ ತೊಂದರೆಗಳನ್ನುಂಟುಮಾಡಬಹುದೆಂದು ಹಲವಾರು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. [Almås H; Kitazawa H, 2007; Rytkönen J, 2006; Stengler M; Tailford KA, 2003] ಇನ್ನೊಂದೆಡೆ, ಪ್ಯಾಶ್ಚೀಕರಣದ ತಾಪದಿಂದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳಲ್ಲಿ ಉಂಟಾಗುವ ಬದಲಾವಣೆಗಳು ಮತ್ತು ಅಂತಹಾ ಪ್ರೊಟೀನುಗಳಿಂದ ಮನುಷ್ಯರ ಮೇಲಾಗುವ ಪರಿಣಾಮಗಳ ಬಗ್ಗೆ ಆಳವಾದ ಅಧ್ಯಯನಗಳು ಇದುವರೆಗೂ ನಡೆದಂತಿಲ್ಲ. [Alvarez;  Real Milk; Rytkönen J, 2006]

ಹಾಲಿನಲ್ಲಿ ಏನೇನಿದೆ ಎಂಬ ಬಗ್ಗೆ ನಮಗಿನ್ನೂ ಸಂಪೂರ್ಣವಾದ ಅರಿವಿಲ್ಲವೆಂದೇ ಹೇಳಬೇಕು. ರಕ್ತನಾಳಗಳ ಬೆಳೆತವನ್ನು ಪ್ರಚೋದಿಸುವ ಅಂಶವೊಂದು ತಾಯಿಯ ಹಾಲಲ್ಲಿರುವುದನ್ನು ತೀರಾ ಇತ್ತೀಚೆಗೆ ಪತ್ತೆ ಮಾಡ ಮಾಡಲಾಗಿದೆ.[Hoshimoto, 2000]. ಇಂತಹಾ ಹಲವು ಬೆಳೆತ ಪ್ರಚೋದಕಗಳು ಹಾಲಲ್ಲಿದ್ದು ನವಜಾತ ಶಿಶುವಿನ ಕರುಳು, ರೋಧವ್ಯವಸ್ಥೆ, ನರಮಂಡಲ, ಎಲುಬುಗಳು ಇವೇ ಮತ್ತಿತರ ಅಂಗಾಂಗಗಳ ತ್ವರಿತವಾದ ಬೆಳವಣಿಗೆಗೆ ಪುಷ್ಟಿಯನ್ನು ನೀಡುತ್ತವೆ.[Grosvenor CE, 1993]. ಅದರೆ ಶೈಶವಾವಸ್ಥೆಯ ಬಳಿಕವೂ ಹಾಲನ್ನು ಕುಡಿಯುವುದರಿಂದ ಇವೇ ಬೆಳೆತ ಪ್ರಚೋದಕಗಳು ಅಸಾಮಾನ್ಯವಾದ, ಅಸಹಜವಾದ ಬೆಳೆತಕ್ಕೆ ಕಾರಣವಾಗಬಲ್ಲವು. ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಪಶುಗಳ ಹಾಲನ್ನು ಕುಡಿಯುವ ಮಕ್ಕಳು ಹೆಚ್ಚು ಎತ್ತರಕ್ಕೆ ಬೆಳೆಯುತ್ತಾರೆನ್ನುವುದನ್ನು ಹಲವಾರು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. [Hoppe C, 2006; Okada T, 2004; Rich-EdwardsJW, 2007; Wiley AS, 2005]

ಹಾಲಿನಲ್ಲಿರುವ IGF-1 ನಂತಹ ಬೆಳೆತ ಪ್ರಚೋದಕಗಳು ಗಂತಿಗಳ ಬೆಳವಣಿಗೆಯನ್ನು ಪ್ರಚೋದಿಸುತ್ತವೆ ಹಾಗೂ  ಹಾಲನ್ನು ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಸೇವಿಸುವವರಲ್ಲಿ ಹಲವು ತರಹದ ಅರ್ಬುದ ಗಂತಿಗಳು ಹೆಚ್ಚು ಸಾಮಾನ್ಯವೆನ್ನುವುದೀಗ ಸಂಶಯಾತೀತವಾಗಿ ಗುರುತಿಸಲ್ಪಟ್ಟಿದೆ. [Epstein SS, 1996; Larsen HR; Oransky I; PCRM; Stewart A, 2004] ಅದೇ ರೀತಿ ಪಶುಗಳ ಹಾಲಿನಲ್ಲಿ ಸ್ರವಿಸಲ್ಪಡುವ ಹಲವು ತರಹದ ಹಾರ್ಮೋನುಗಳು ಮನುಷ್ಯರ ಪ್ರಜನನಾಂಗಗಳ ಮೇಲೆ ವರ್ತಿಸುವುದರಿಂದ ಸಂತಾನಶಕ್ತಿಯ ಮೇಲೆ ಪರಿಣಾಮಗಳುಂಟಾಗಬಹುದು ಮಾತ್ರವಲ್ಲ, ಈ ಅಂಗಗಳಲ್ಲಿ ಕ್ಯಾನ್ಸರ್ ಬೆಳೆಯುವುದಕ್ಕೂ ಕಾರಣವಾಗಬಹುದು.[Ganmaa D, 2001; Ganmaa D, 2002; Ganmaa D, 2003; Health Effects; Li D, 2003; Sato A]

ಪಶುಗಳು ಸೇವಿಸುವ ಆಹಾರ ಮತ್ತು ಅದರ ಮೂಲಕ ಅವುಗಳ ದೇಹವನ್ನು ಸೇರುವ ಕೀಟನಾಶಕಗಳು, ಪಶುಗಳಿಗೆ ನೀಡುವ ಹಲವು ತರಹದ ಔಷಧಗಳು ಹಾಗೂ ಬೆಳೆತ ಪ್ರಚೋದಕಗಳು – ಇವೆಲ್ಲವೂ ಹಾಲಿನಲ್ಲಿ ಸ್ರವಿಸಲ್ಪಟ್ಟು ಮನುಷ್ಯರಿಗೆ ತೊಂದರೆಯನ್ನುಂಟುಮಾಡಬಹುದು. [Epstein SS, 1996; Palmer LF]

ಹಾಗಾದರೆ ಹಾಲನ್ನು ಕುಡಿಯಬಾರದೇ? ಬೇಕೇ ಬೇಕು ಮತ್ತು ಖಂಡಿತಾ ಕೂಡದು. ತಾಯಿಯ ಹಾಲನ್ನು ಮಗುವಿಗೆ ಕುಡಿಸಲೇ ಬೇಕು. ಪಶುವಿನ ಹಾಲನ್ನು ಕುಡಿಯಲೇ ಬಾರದು. ಮೊದಲನೆಯದು ನಿಸರ್ಗಸಹಜ ಸತ್ಯ, ಎರಡನೆಯದು ಕೋಟಿ ಕೋಟಿಗಟ್ಟಲೆಯ ವ್ಯವಹಾರ.

  • ತಾಯಿಯ ಹಾಲು ಆಕೆಯ ಮಗುವಿನ ಪಾಲಿಗೆ ಅತ್ಯುತ್ಕೃಷ್ಟವಾದ, ಸಂಪೂರ್ಣವಾದ ಆಹಾರ. ನವಜಾತ ಶಿಶುವಿಗೆ ತಾಯಿಯ ಹಾಲು ಬೇಕೇ ಬೇಕು, ಮಾತ್ರವಲ್ಲ, ಮೊದಲ ಆರು ತಿಂಗಳುಗಳ ಕಾಲ ಬೇರೇನನ್ನೂ ಮಗುವಿಗೆ ಉಣಿಸಬಾರದು.
  • ತಾಯಿಯ ಹಾಲಷ್ಟೇ ಆಕೆಯ ಮಗುವಿಗೆ ಆಹಾರ; ಒಂದು ಪ್ರಾಣಿಯ ಹಾಲು ಇನ್ನೊಂದು ಪ್ರಾಣಿಗೆ ಆಹಾರವಾಗಲಾರದು, ಇನ್ನೊಂದು ಶರೀರಕ್ಕೆ ಒಗ್ಗದು.
  • ಅನ್ಯ ಪ್ರಾಣಿಗಳ ಹಾಲು ಶಿಶುವಿನ ಕರುಳಲ್ಲಿ ಸರಿಯಾಗಿ ಜೀರ್ಣವಾಗುವುದಿಲ್ಲ [Rees L] ಮಾತ್ರವೇ ಅಲ್ಲ, ಅದರಲ್ಲಿರುವ ಮೇದಸ್ಸು, ಪ್ರೊಟೀನು ಹಾಗೂ ಸಕ್ಕರೆಗಳ ಅನುಪಾತವು ತಾಯಿಯ ಹಾಲಿಗಿಂತ ತೀರಾ ಭಿನ್ನವಾಗಿರುವುದರಿಂದ ಶಿಶುವಿನ ಬೆಳವಣಿಗೆಗೆ ತೊಂದರೆಯಾಗಬಹುದು, ನಂತರವೂ ಹಲವು ತರದ ಕಾಹಿಲೆಗಳಿಗೆ ಹೇತುವಾಗಬಹುದು.[Oski FA, 1985]
  • ಬೆಳ್ಳಗಿರುವುದೆಲ್ಲಾ ಹಾಲಲ್ಲ. ಪಶುಗಳ ಹಾಲನ್ನು ಶೇಖರಿಸಿ ಮಾರಾಟ ಮಾಡುವ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಹಾಲಾಗಿದ್ದದ್ದು ಹಲವು ಬದಲಾವಣೆಗಳಿಗೆ ಒಳಗಾಗಿ ಗ್ರಾಹಕನ ಕೈಗೆ ತಲುಪುವಾಗ ನೈಸರ್ಗಿಕವಾದ ಹಾಲಾಗಿರದೇ ತಾಪಕ್ಕೆ ಸಿಕ್ಕು ಬದಲಾದ ಪ್ರೊಟೀನುಗಳು, ಸಕ್ಕರೆ ಮತ್ತು ಕ್ಯಾಲ್ಸಿಯಂ ತುಂಬಿರುವ ಬಿಳಿ ದ್ರಾವಣವಾಗಿರುತ್ತದೆ. ಇದರಿಂದ ಮಾನವನ ದೇಹಕ್ಕೆ ಪ್ರಯೋಜನಗಳಿಗಿಂತ ತೊಂದರೆಗಳೇ ಜಾಸ್ತಿ.[Real Milk]
  • ಪಶುಗಳ ಹಾಲಿನ ಸೇವನೆಯಿಂದ ಬೊಜ್ಜು, ರಕ್ತನಾಳಗಳ ಒಳಭಿತ್ತಿಯ ಪೆಡಸಾಗುವಿಕೆ, ಮಧುಮೇಹ, ಪಚನಾಂಗದ ಹಲವು ಕಾಹಿಲೆಗಳು, ಶ್ವಾಸಾಂಗದ ತೊಂದರೆಗಳು, ಹಲವು ತರಹದ ಕ್ಯಾನರ್ ಗಳು, ಮೂಳೆಸವೆತ ಮತ್ತು ಮೂಳೆಮುರಿತ, ಹಲವು ಸೋಂಕುರೋಗಗಳು, ಮೊಡವೆಗಳು, ಮೂತ್ರಪಿಂಡದ ಹರಳುಗಳು ಇವೇ ಮುಂತಾದ ಹಲವಾರು ಸಮಸ್ಯೆಗಳಿಗೆ ಕಾರಣವಾಗುತ್ತದೆ.

ನವಜಾತ ಶಿಶುವಿಗೆ ತಾಯಿಯ ಹಾಲೇಕೆ ಬೇಕು?

ತನ್ನ ಮಗುವಿಗಾಗಿ ತಾಯಿಯು ಸ್ರವಿಸುವ ವಿಶಿಷ್ಟವಾದ ಆಹಾರವೇ ಹಾಲು. ಅದೊಂದು ‘ಜೀವಂತವಾಗಿರುವ’ ದ್ರಾವಣ. ಮಗುವಿಗೆ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸುವ ಲ್ಯಾಕ್ಟೋಸ್ ಎಂಬ ಸಕ್ಕರೆ, ಮಗುವಿನ ರೋಗ ನಿರೋಧಕ ಶಕ್ತಿಯನ್ನು ಹೆಚ್ಚಿಸಿ ನವಜಾತ ಶಿಶುವನ್ನು ವಿವಿಧ ಸೋಂಕುಗಳಿಂದ ರಕ್ಷಿಸುವ ಪ್ರೋಟೀನುಗಳು ಮತ್ತು ನವಜಾತ ಶಿಶುವಿನ ಮಿದುಳಿನ ಬೆಳವಣಿಗೆಗೆ ಅತ್ಯಗತ್ಯವಾದ ಹಲವು ಬಗೆಯ ವಿಶಿಷ್ಟವಾದ ಮೇದಸ್ಸುಗಳು ಹಾಲಿನಲ್ಲಿರುತ್ತವೆ. ಈ ಹಾಲಿನ ಮೂಲಕ ತಾಯಿ ಮತ್ತು ಮಗುವಿನ ಬೆಸುಗೆಯು ಮಗುವಿನ ಜನನಾನಂತರವೂ ಮುಂದುವರಿಯುತ್ತದೆ, ಮಗುವಿನ ದೈಹಿಕ, ಬೌದ್ಧಿಕ ಹಾಗೂ ಮಾನಸಿಕ ಬೆಳವಣಿಗೆಗೆ ಕಾರಣವಾಗುತ್ತದೆ. ಆದ್ದರಿಂದಲೇ ಹಾಲು ಆಯಾ ಶಿಶುವಿಗೆ ತನ್ನ ತಾಯಿಯಿಂದ ಲಭಿಸುವ ವಿಶಿಷ್ಟವಾದ ಪೋಷಣೆಯಾಗಿದ್ದು, ಬೇರೊಂದು ಹಾಲಿನಲ್ಲಿರುವ ಇವೇ ಅಂಶಗಳು ಮಗುವಿನ ದೇಹಕ್ಕೆ ಒಗ್ಗಲಾರವು.

ಮಗುವು ಜನಿಸಿದ ಅರ್ಧ ಗಂಟೆಯೊಳಗೆ ತಾಯಿಯು ಹಾಲೂಡಿಸುವುದರಿಂದ ಮಗುವಿನ ಮಿದುಳಿನಲ್ಲಿ ಆಹಾರ ಸೇವನೆಯನ್ನು ನಿಯಂತ್ರಿಸುವ ವ್ಯವಸ್ಥೆಯು ಸರಿಯಾಗಿ ರೂಪುಗೊಂಡು ಬಲಗೊಳ್ಳುತ್ತದೆ, ಜೀವನಪರ್ಯಂತ ಹಸಿವು, ಆಹಾರ ಸೇವನೆ ಮತ್ತು ಅದರಿಂದ ಸಂತೃಪ್ತಿಯನ್ನು ಸರಿಯಾಗಿ ನಿಭಾಯಿಸಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ. [Alexe D, 2006; Bonnet M, 2002; Bouret SG, 2004; Bouret SG, 2004b; Bouret SG, 2004c; Casabiell X, 1997; El-Haddad MA, 2004; Gluckman PD, 2006; Gunderson EP, 2007; Gupta A; Mantzoros CS; Miralles O, 2006; Pico´ C, 2007; Salimei E, 2002; Steppan CM, 1999] ಹುಟ್ಟಿದ ಮಗುವಿಗೆ ಜನನದ ಅರ್ಧ ತಾಸಿನೊಳಗೆ ತಾಯಿಯ ಹಾಲನ್ನೂಡಿಸುವುದರಿಂದ ಬೊಜ್ಜು, ಮಧುಮೇಹ ಇವೇ ಮುಂತಾದ ಉಪಾಪಚಯ ಸಂಬಂಧಿ ರೋಗಗಳನ್ನು ತಡೆಯಲು ಸಾಧ್ಯವಾಗಬಹುದು.

ತಾಯಿಯ ಗರ್ಭದಿಂದ ಹೊರಬಂದ ಬಳಿಕ ಸ್ತನಪಾನವನ್ನು ಮಾಡುವ ಮೊದಲ ವರ್ಷದಲ್ಲಿ ಶಿಶುವಿನ ದೇಹದಲ್ಲಿ ಅದಕ್ಕೆ ಪೂರಕವಾದ ಬದಲಾವಣೆಗಳು ಉಂಟಾಗುತ್ತವೆ,[Summary, 1985] ಮಗುವಿನ ರೋಧವ್ಯವಸ್ಥೆಯಲ್ಲಿಯೂ ಸೂಕ್ತವಾದ ಬದಲಾವಣೆಗಳಾಗುತ್ತವೆ. ಮೊದಲ ಆರು ತಿಂಗಳುಗಳಲ್ಲಿ ಮಗುವಿನ ಕರುಳು ಯಾವುದೇ ಅಡ್ಡಿಗಳನ್ನೊಡ್ಡದೆ ಒಳಬಂದದ್ದೆಲ್ಲವನ್ನೂ ಹೀರಿಕೊಳ್ಳುತ್ತದೆ.  ಈ ಕಾರಣಗಳಿಂದಾಗಿಯೇ, ನವಜಾತ ಶಿಶುವಿಗೆ ಮೊದಲ ಆರು ತಿಂಗಳುಗಳ ಕಾಲ ತಾಯಿಯ ಹಾಲನ್ನು ಮಾತ್ರವೇ ಉಣಿಸಬೇಕೆಂದೂ, ಬೇರೆ ಏನನ್ನೂ (ನೀರನ್ನೂ ಸಹ) ಉಣಿಸಬಾರದೆಂದೂ ಈಗ ಒತ್ತಿ ಹೇಳಲಾಗುತ್ತಿದೆ. [CDC;WHO]

ತಾಯಿಯ ಹಾಲಿನ ಪೋಷಣೆಯಿಂದ ಮಗುವಿಗೆ ಹಲವಾರು ಲಾಭಗಳಿವೆ. ತಾಯಿಯ ಹಾಲನ್ನು ಕುಡಿದ ಮಕ್ಕಳು ಕೃತಕ ಆಹಾರವನ್ನು ಪಡೆದ ಮಕ್ಕಳಿಗಿಂತ ಚೆನ್ನಾಗಿ ಬೆಳೆಯುತ್ತಾರೆ ಹಾಗೂ ರೋಧಶಕ್ತಿಯನ್ನು ಪಡೆದಿರುತ್ತಾರೆ. ಕೃತಕ ಆಹಾರವನ್ನು ಸೇವಿಸಿದ ಮಕ್ಕಳಿಗೆ ಹೋಲಿಸಿದರೆ, ಸ್ತನಪಾನವನ್ನು ಮಾಡಿದ ಮಕ್ಕಳ ಬೌಧ್ಧಿಕ ಬೆಳವಣಿಗೆಯು ಉತ್ತಮವಾಗಿದ್ದು, ಅವರು ರೋಗಗ್ರಸ್ತರಾಗುವ ಸಂಭವವು ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ ಎನ್ನುವುದನ್ನು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ.[Breastfeeding, 2005; Dewey KG, 1998] ತಾಯಿಯ ಹಾಲಿನ ಪೋಷಣೆಯಿಂದ ಹಲವು ತರದ ಸೋಂಕು ರೋಗಗಳನ್ನು ತಡೆಯಲು ಅಥವಾ ಅವುಗಳ ತೀವ್ರತೆಯನ್ನು ಸಾಕಷ್ಟು ಕಡಿಮೆ ಮಾಡಲು ಸಾಧ್ಯವಿದೆ. ಕೆಲವು ಮಕ್ಕಳು ತಮ್ಮ ಮೊದಲ ವರ್ಷದಲ್ಲಿ ಯಾವುದೇ ನಿರ್ದಿಷ್ಟ ಕಾರಣಗಳಿಲ್ಲದೇ ಹಠಾತ್ತನೇ ಸಾಯುವುದಿದ್ದು, ತಾಯಿಯ ಹಾಲುಂಡ ಮಕ್ಕಳಲ್ಲಿ ಇಂತಹಾ ಪ್ರಕರಣಗಳು ವಿರಳವಾಗಿರುತ್ತವೆ. ಮಕ್ಕಳಲ್ಲಿ ಹಾಗೂ ವಯಸ್ಕರಲ್ಲಿ ಕಂಡುಬರುವ ಮೊದಲನೇ ಮತ್ತು ಎರಡನೇ ವಿಧದ ಮಧುಮೇಹ, ದುಗ್ಧರಸ ಗ್ರಂಥಿಗಳ ಕ್ಯಾನ್ಸರ್ (ಲಿಂಫೋಮಾ), ರಕ್ತದ ಕ್ಯಾನ್ಸರ್ (ಲ್ಯುಕೀಮಿಯಾ), ಬೊಜ್ಜು, ಕೊಲೆಸ್ಟೆರಾಲ್ ಹೆಚ್ಚಳ, ಅಸ್ತಮಾ ಮುಂತಾದ ಕಾಹಿಲೆಗಳು ಕೂಡಾ ಸ್ತನಪಾನ ಮಾಡಿದವರಲ್ಲಿ ಕಡಿಮೆಯಾಗಿರುತ್ತವೆ.

ಹುಟ್ಟಿದ ಅರ್ಧ ತಾಸಿನೊಳಗೆ ಶಿಶುವಿಗೆ ಸ್ತನಪಾನವನ್ನು ನೀಡುವುದು ಅತ್ಯಗತ್ಯ, ಹೀಗೆ ಮಾಡುವುದರಿಂದ ಮಗುವಿನ ಮೆದುಳಲ್ಲಿ ಆಹಾರ ಸೇವನೆಯನ್ನು ನಿಯಂತ್ರಿಸುವ ವ್ಯವಸ್ಥೆಯು ದೃಢಗೊಳ್ಳುತ್ತದೆ. ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳಲ್ಲಿ ಉಪಾಪಚಯದ ಗತಿಯು ಕಡಿಮೆಯಿದ್ದು, ಅವರು ತಮ್ಮ ಆಹಾರ ಸೇವನೆಯ ಪ್ರಮಾಣವನ್ನು ಕೆಳಮಟ್ಟದಲ್ಲೇ ನಿಯಂತ್ರಿಸಬಲ್ಲವರಾಗಿರುತ್ತಾರೆ. ಕಡಿಮೆ ಆಹಾರ ಸೇವನೆಯಿಂದಲಾಗಲೀ, ನಿಧಾನಗತಿಯಲ್ಲಿ ತೂಕವನ್ನು ಹೆಚ್ಚಿಸಿಕೊಳ್ಳುವುದರಿಂದಾಗಲೀ ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳಲ್ಲಿ ಯಾವುದೇ ದುಷ್ಪರಿಣಾಮಗಳು ಕಂಡುಬರುವುದಿಲ್ಲ.  ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳು ನೀಳಕಾಯರಾಗಿರುವುದು ಮಾತ್ರವೇ ಅಲ್ಲ, ಇತರ ಆಹಾರಗಳ ಸೇವನೆಯನ್ನು ತೊಡಗಿದ ಬಳಿಕವೂ ಅವರ ತೂಕವು ಬೇಗನೇ ಹೆಚ್ಚುವುದಿಲ್ಲ. ಅಂದರೆ, ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳು ಬೊಜ್ಜಿನಿಂದ ಸುರಕ್ಷಿತರಾಗಿರುತ್ತಾರೆ ಎಂದಾಯಿತು. ಇನ್ನೊಂದೆಡೆ, ನವಜಾತ ಶಿಶುಗಳಿಗೆ ಕೃತಕವಾಗಿ ತಯಾರಿಸಿದ ಶಿಶು ಆಹಾರವನ್ನು ಕೊಡುವುದರಿಂದ, ಎಳವೆಯಿಂದಲೇ ಅವರ ದೇಹದಲ್ಲಿ ಬೊಜ್ಜು ಬೆಳೆಯಲು ಕಾರಣವಾಗುತ್ತದೆ. ವಿಶ್ವ ಆರೋಗ್ಯ ಸಂಸ್ಥೆಯು 1997 ರಿಂದ 2003ರವರೆಗೆ ಬ್ರೆಜಿಲ್, ಘಾನಾ, ಭಾರತ, ನಾರ್ವೇ, ಒಮನ್ ಮತ್ತು ಅಮೆರಿಕಾ ದೇಶಗಳಲ್ಲಿ ನವಜಾತ ಶಿಶುಗಳಲ್ಲಿ ನಡೆಸಿದ ಅಧ್ಯಯನದಲ್ಲಿ ಒಂದು ಆಶ್ಚರ್ಯಕರವಾದ  ವಿಷಯವು ಹೊರಹೊಮ್ಮಿತು [Baby growth; Bonyata K; WHO revises]: ಮೊದಲ ಆರು ತಿಂಗಳಲ್ಲಿ ಕೇವಲ ಸ್ತನಪಾನವನ್ನು ಮಾತ್ರವೇ ಮಾಡಿದ ಮಕ್ಕಳ ದೇಹತೂಕವು, ಮಕ್ಕಳ ಬೆಳವಣಿಗೆಯ ಪಟಕ್ಕೆ [Hawkes N] ಹೋಲಿಸಿದಾಗ ಕಡಿಮೆಯಿರುವುದು ಕಂಡುಬಂದಿತು. ಕಳೆದ ಸುಮಾರು ಮೂವತ್ತು ವರ್ಷಗಳಿಂದ ಬಳಕೆಯಲ್ಲಿದ್ದ ಆ ಪಟವನ್ನು ಇಂಗ್ಲೆಂಡಿನಲ್ಲಿ ನಡೆಸಿದ್ದ ಅಧ್ಯಯನಗಳ ಅಧಾರದಲ್ಲಿ  ತಯಾರಿಸಲಾಗಿತ್ತು ಮತ್ತು ಕೃತಕ ಆಹಾರವನ್ನು ಸೇವಿಸಿದ್ದ ಮಕ್ಕಳ ತೂಕವನ್ನೂ ಅದರಲ್ಲಿ ಪರಿಗಣಿಸಲಾಗಿತ್ತು. ಅಂದರೆ, ಕೃತಕ ಆಹಾರವನ್ನು ಸೇವಿಸುವ ಮಕ್ಕಳ ತೂಕವು ತೀರಾ ಎಳವೆಯಿಂದಲೇ ಅಧಿಕವಾಗಿರುತ್ತದೆ ಎನ್ನುವ ಸತ್ಯದ ಅರಿವಾಗಲು ಇಷ್ಟು ವರ್ಷ ಬೇಕಾಯಿತು! ಶಿಶುಗಳಿಗೆ ಕೃತಕ ಆಹಾರವನ್ನು ನೀಡುವುದರಿಂದ ಅತಿ ಸಣ್ಣ ವಯಸ್ಸಿನಿಂದಲೇ ಅವರಲ್ಲಿ ಬೊಜ್ಜು ಬೆಳೆಯುತ್ತದೆ ಎನ್ನುವುದೀಗ ತಡವಾಗಿಯಾದರೂ ಅರ್ಥವಾಗಿದೆ! ಇದೀಗ ಕಳೆದ ಒಂದು ವರ್ಷದಿಂದ ಈ ಹೊಸ ಬಹುದೇಶೀಯ ಅಧ್ಯಯನದ ಅಧಾರದಲ್ಲಿ, ಮಕ್ಕಳ ತೂಕವನ್ನು ಕಡಿಮೆಯಾಗಿ ಸೂಚಿಸುವ ಹೊಸ ಪಟವನ್ನು ವಿಶ್ವಸಂಸ್ಥೆಯು ಬಳಕೆಗೆ ತಂದಿದೆ. ಸ್ತನಪಾನವೇ ಮಗುವಿನ ನಿಸರ್ಗಸಹಜವಾದ ಆಹಾರವೆಂದೂ, ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳಲ್ಲಿ ಕಂಡುಬರುವ ಬೆಳವಣಿಗೆಯೇ ಸಹಜವಾದ ಬೆಳವಣಿಗೆಯೆಂದೂ ಈಗಲಾದರೂ ನಾವು ಒಪ್ಪಿಕೊಳ್ಳುವಂತಾಯಿತಲ್ಲ![Onis MD, 2006] ಮನುಕುಲವು ಬಾಹ್ಯಾಕಾಶಕ್ಕೊಂದು ಕೃತಕ ಉಪಗ್ರಹವನ್ನು ಉಡಾಯಿಸಿ ಐವತ್ತು ವರ್ಷಗಳೇ ಕಳೆದರೂ, ತಾಯಿಯ ಹಾಲೇ ಮಗುವಿನ ಪಾಲಿಗೆ ಸರ್ವಶ್ರೇಷ್ಠವಾದ (ಮತ್ತು ಏಕೈಕ) ಆಹಾರವೆಂದು ಒಪ್ಪಿಕೊಳ್ಳುವುದಕ್ಕೆ ಕ್ರಿ.ಶ. 2006ನೇ ವರ್ಷದವರೆಗೆ ಮನುಕುಲವು ಕಾಯಬೇಕಾಯಿತು!

ಮಗುವಿನ ಪಾಲಿಗೆ ತಾಯಿಯ ಹಾಲೇ ಅಮೃತ. ಬೇರಾವ ಆಹಾರವೂ ಅದಕ್ಕೆ ಎಳ್ಳಷ್ಟೂ ಹೋಲಿಕೆಯಲ್ಲ. ಪಶುವಿನ ಹಾಲು ಯಾ ಕೃತಕವಾಗಿ ತಯಾರಿಸಿದ ‘ಶಿಶು ಆಹಾರ’ ಗಳನ್ನು ತಾಯಿಯ ಹಾಲಿನಷ್ಟೇ ಅಥವಾ ಅದಕ್ಕಿಂತಲೂ ಶ್ರೇಷ್ಠವೆಂದು ಮುಂದೊಡ್ಡುವುದು ತಾಯ್ತನಕ್ಕೊಂದು ಅಪಮಾನ ಮಾತ್ರವೇ ಅಲ್ಲ, ತಾಯಿ ಮತ್ತು ಮಗುವಿನ ನಡುವಿನ ಅತಿ ವಿಶಿಷ್ಟವಾದ ಬೆಸುಗೆಯನ್ನು ಮುರಿಯುವ ಕುಟಿಲ ಪ್ರಯತ್ನವೂ ಹೌದು.

ಎಲ್ಲಾ ಸಸ್ತನಿಗಳ ಹಾಲು ಒಂದೇ ರೀತಿಯದ್ದಾಗಿರುವುದಿಲ್ಲ. ಈ ಕೆಳಗಿನ ಹೋಲಿಕೆಯನ್ನು ಗಮನಿಸಿ:[Cip; Dairyforall a,b,c; Foodsci; Saanendoah]

ಉತ್ಪನ್ನ ಮೇದಸ್ಸು (%) ಪ್ರೊಟೀನು (%) ಪಿಷ್ಠ (%) ಕ್ಯಾಲ್ಸಿಯಂ (ಮಿಗ್ರಾಂ/100 ಗ್ರಾಂ) ಫಾಸ್ಫರಸ್ (ಮಿಗ್ರಾಂ/100 ಗ್ರಾಂ) ನೀರು (%)
ಮಾನವ ಹಾಲು 4.4 1.0 6.9 32 14 87.7
ದನದ ಹಾಲು (ಸಂಪೂರ್ಣ) 3.3 3.3 4.7 119 93 88.0
ಮೇಕೆಯ ಹಾಲು 4.1 3.6 4.4 133 111 86.5
ಕಡಿಮೆ ಮೇದಸ್ಸಿನ ಹಾಲು 2.0 3.3 4.8 122 95 89.2
ಸ್ಕಿಮ್ಡ್ ಹಾಲು 0.2 3.4 4.9 123 101 90.8
ಮಜ್ಜಿಗೆ 0.9 3.3 4.8 116 89 90.1
ಮೊಸರು 3.3 3.5 4.7 121 95 88.0
ಬೆಣ್ಣೆ 81.1 0.9 0.1 24 23 15.9

ಮಾನವ ಹಾಲಿನಲ್ಲಿ ಸಕ್ಕರೆ ಹಾಗೂ ಮೇದಸ್ಸುಗಳ ಪ್ರಮಾಣವು ಅಧಿಕವಿದ್ದು, ಪ್ರೊಟೀನುಗಳ ಪ್ರಮಾಣವು ಕಡಿಮೆಯಿರುತ್ತದೆ, ಆದರೆ ಪಶುಗಳ ಹಾಲಿನಲ್ಲಿ ಪ್ರೋಟೀನುಗಳ ಪ್ರಮಾಣವು ಹೆಚ್ಚಿರುತ್ತದೆ. ಮಾನವ ಹಾಲಿನಲ್ಲಿ ಕ್ಯಾಲ್ಸಿಯಂ ಪ್ರಮಾಣವು ಪಶುಗಳ ಹಾಲಿನ ನಾಲ್ಕನೇ ಒಂದರಷ್ಟಿದ್ದರೆ, ಫಾಸ್ಫರಸ್ ನ ಪ್ರಮಾಣವು ಅದರ ಎಂಟನೇ ಒಂದರಷ್ಟಿದೆ. ಇದಕ್ಕೆ ಕಾರಣವೂ ಅತಿ ಸರಳ: ಪಶುಗಳ ಮರಿಗಳಿಗೆ ಹೋಲಿಸಿದರೆ, ಮಾನವ ಶಿಶುವಿನ ಬೆಳವಣಿಗೆಗೆ ಸಾಕಷ್ಟು ಕಡಿಮೆ ಪ್ರಮಾಣದ ಪ್ರೊಟೀನು, ಕ್ಯಾಲ್ಸಿಯಂ ಮತ್ತು ಫಾಸ್ಫರಸ್ ಅಗತ್ಯವಿರುತ್ತದೆ. ಆದ್ದರಿಂದ, ಪಶುಗಳ ಹಾಲಿನ ಈ ಆಹಾರಾಂಶಗಳನ್ನು ಇಷ್ಟೊಂದು ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಸೇವಿಸುವುದರಿಂದ ನಮ್ಮ ದೇಹಕ್ಕೆ ಪ್ರಯೋಜನಕ್ಕಿಂತ ಹೆಚ್ಚು ಹಾನಿಯನ್ನೇ ಉಂಟುಮಾಡಬಹುದು.

ಜನನಾನಂತರ ಮಗುವಿನ ಮಿದುಳಿನ ಬೆಳವಣಿಗೆಯ ವಿಶೇಷವಾದ ಅಗತ್ಯಗಳನ್ನು ಹಾಲಿನಲ್ಲಿರುವ ಮೇದಸ್ಸು ಪೂರೈಸುತ್ತದೆ. ಹಾಲಿನಲ್ಲಿರುವ ದೀರ್ಘ ಸರಣಿಯ ಅಪರ್ಯಾಪ್ತ ಮೇದಸ್ಸಿನ ಆಮ್ಲಗಳು (long-chain polyunsaturated fatty acids) ಮಗುವಿನ ಬೆಳವಣಿಗೆಗೆ ಅತ್ಯಗತ್ಯವಾಗಿದ್ದು, ಶಿಶುವಿನ ಮಿದುಳು, ನರಮಂಡಲ ಮತ್ತು ಅಕ್ಷಿಪಟಲಗಳ ಬೆಳವಣಿಗೆಯಲ್ಲಿ ಅತಿ ಮಹತ್ತರವಾದ ಪಾತ್ರವನ್ನು ಹೊಂದಿವೆ. ಸ್ವೀಡನಿನ ತಾಯಂದಿರಲ್ಲಿ ನಡೆಸಿದ ಅಧ್ಯಯನವೊಂದರಲ್ಲಿ, ಹಾಲಿನಲ್ಲಿರುವ ಅರಾಕ್ಡೋನಿಕ್ ಆಮ್ಲ ಮತ್ತು ಡೊಕೊಸಾಹೆಕ್ಸಾನೈಕ್ ಆಮ್ಲಗಳ ಅನುಪಾತವು ಶಿಶುಗಳ ಮಿದುಳಿನಲ್ಲಿರುವ ಈ ಆಮ್ಲಗಳ ಅನುಪಾತಕ್ಕೆ ಸಮಾನವಾಗಿದೆಯೆಂದೂ, ಮಗುವಿನ ಒಂದು ಹಾಗೂ ಮೂರನೇ ತಿಂಗಳಿನಲ್ಲಿ ತಲೆಯ ಹಾಗೂ ಮಿದುಳಿನ ಬೆಳವಣಿಗೆಯ ಗತಿಗೂ ಹಾಲಿನಲ್ಲಿ ಈ ಆಮ್ಲಗಳ ಪ್ರಮಾಣಕ್ಕೂ ನೇರವಾದ ಹೋಲಿಕೆಯಿದೆಯೆಂದೂ ಕಂಡುಬಂದಿದೆ.[Xiang M, 2000] ಜನನಾನಂತರದ ಆರಂಭದ ವಾರಗಳಲ್ಲಿ ತಾಯಿಯ ಹಾಲನ್ನು ಪಡೆದ ಮಕ್ಕಳು ಏಳೂವರೆಯಿಂದ ಎಂಟು ವರ್ಷ ವಯಸ್ಸಿನವರಾದಾಗ, ತಾಯಿಯ ಹಾಲನ್ನು ಪಡೆಯದ ಮಕ್ಕಳಿಗಿಂತ ಬಹಳಷ್ಟು ಹೆಚ್ಚಿನ ಬುದ್ದಿಮತ್ತೆಯನ್ನು ಹೊಂದಿರುತ್ತಾರೆಂದು ಅಧ್ಯಯನಗಳಲ್ಲಿ ವ್ಯಕ್ತವಾಗಿದೆ.[Lucas A, 1992; Morley R, 1988] ಬೇರೆಲ್ಲಾ ಅಂಶಗಳನ್ನು ಸರಿದೂಗಿಸಿದ ಬಳಿಕವೂ, ಕೃತಕ ಆಹಾರವನ್ನು ಪಡೆದ ಮಕ್ಕಳಿಗಿಂತ ಸ್ತನಪಾನವನ್ನು ಪಡೆದ ಮಕ್ಕಳ ಬೌದ್ಧಿಕ ಬೆಳವಣಿಗೆಯು ಸಾಕಷ್ಟು ಹೆಚ್ಚಿರುತ್ತದೆಯೆನ್ನುವುದನ್ನು ಹಲವು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ.[Anderson JW, 1999; Uauy R, 1999]  ಕಲಿಕೆಯಲ್ಲಿ ಹಿಂದುಳಿಯುವ ಮಕ್ಕಳನ್ನು ‘ಎಮ್ಮೆ ಹಾಲು ಕುಡಿದವನೋ?” ಎಂದೆಲ್ಲಾ ಮೇಷ್ಟ್ರುಗಳು ಗದರಿಸುತ್ತಿದ್ದುದರಲ್ಲಿ ನಿಜವಿತ್ತೇನೋ! ಮಧ್ಯಾಹ್ನದ ಬಿಸಿಯೂಟದ ಜತೆಯಲ್ಲಿ ಹಾಲನ್ನೇ ಕುಡಿಸಬೇಕೆಂದು ಕೆಲ ಸ್ಥಾಪಿತ ಹಿತಾಸಕ್ತಿಗಳು ಕೂಗಾಡುವುದೊಂದು ಷಡ್ಯಂತ್ರವಿರಬಹುದೇ?

ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳನ್ನು ಫಾಸ್ಫರಸ್ ಯುಕ್ತ ಕೇಸೀನ್ ಗಳು ಮತ್ತು ಫಾಸ್ಫರಸ್ ಇಲ್ಲದ ವೇ ಪ್ರೊಟೀನುಗಳೆಂದು ಎರಡು ಗುಂಪುಗಳಲ್ಲಿ ವಿಭಜಿಸಬಹುದು. ಕೇಸೀನ್ ಗುಂಪಿನ ಪ್ರೊಟೀನುಗಳಲ್ಲಿ ಫಾಸ್ಫರಸ್ ಅಂಶವು ಹೆಚ್ಚಿರುವುದರಿಂದ ಇವು ಕ್ಯಾಲ್ಸಿಯಂನ ಜತೆಗೂಡಿ ಕ್ಯಾಲ್ಸಿಯಂ ಫಾಸ್ಫೇಟ್ ಸಂಯುಕ್ತಗಳಾಗಿರುತ್ತವೆ. ಫಾಸ್ಫರಸ್ ಪ್ರಮಾಣವು ಹೆಚ್ಚಿರುವುದರಿಂದಲೇ ಹಾಲಿನಲ್ಲಿ ಕ್ಯಾಲ್ಸಿಯಂ ಪ್ರಮಾಣವು ಕೂಡಾ ಹೆಚ್ಚಿರುತ್ತದೆ.[Milk Protein] ಮಾನವ ಹಾಲಿನಲ್ಲಿ ವೇ ಮತ್ತು ಕೇಸೀನ್ ಪ್ರೊಟೀನುಗಳ ಅನುಪಾತವು 70:30 ರಷ್ಟಿರುತ್ತದೆ.[Summary] ದನದ ಹಾಲಿನಲ್ಲಿ ಶೇ.82ರಷ್ಟು ಕೇಸೀನ್ ಆಗಿದ್ದು, ಕೇವಲ ಶೇ.18ರಷ್ಟು ಭಾಗವು ವೇ ಪ್ರೊಟೀನು ಆಗಿರುತ್ತದೆ. ಅಂದರೆ, ತಾಯಿಯ ಹಾಲಿನಲ್ಲಿರುವ ಕೇಸೀನ್ ಪ್ರಮಾಣವು ದನದ ಹಾಲಿನಲ್ಲಿರುವ ಕೇಸೀನ್ ಪ್ರಮಾಣದ ಅರ್ಧದಷ್ಟೂ ಇಲ್ಲ ಎಂದಾಯಿತು. ದನದ ಹಾಲಿನ ಮೂಲಕ ಅಷ್ಟೊಂದು ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಕೇಸೀನ್ ಅನ್ನು ಸೇವಿಸುವುದರಿಂದಲೇ ಹಲವು ತರಹದ ಅಸಹಿಷ್ಣುತೆಗೆ (allergy) ಕಾರಣವಾಗುತ್ತದೆ.[Stengler M] ದನದ ಹಾಲಿನ ವೇ ಪ್ರೊಟೀನುಗಳಲ್ಲಿ ಶೇ.50ರಷ್ಟು β ಲ್ಯಾಕ್ಟೋಗ್ಲೋಬುಲಿನ್, ಶೇ.20ರಷ್ಟು α ಲ್ಯಾಕ್ಟಾಲ್ಬುಮಿನ್, ರಕ್ತ ದ್ರವದ ಆಲ್ಬುಮಿನ್, ಇಮ್ಯುನೋಗ್ಲಾಬುಲಿನ್ ಗಳು, ಲ್ಯಾಕ್ಟೊಫೆರಿನ್, ಟ್ರಾನ್ಸ್ಫೆರಿನ್  ಮತ್ತಿತರ ಹಲವಾರು ಸಣ್ಣ ಪ್ರೊಟೀನುಗಳು ಮತ್ತು ಕಿಣ್ವಗಳಿರುತ್ತವೆ. ಮಾನವ ಹಾಲಿನಲ್ಲಿ β ಲ್ಯಾಕ್ಟೋಗ್ಲೋಬುಲಿನ್ ಇರುವುದೇ ಇಲ್ಲ.[Milk Protein] ಪಶುಗಳ ಹಾಲಿನಲ್ಲಿರುವ ಇಂತಹಾ ಮನುಷ್ಯಸಹಜವಲ್ಲದ ಪ್ರೊಟೀನುಗಳು, ಅದರಲ್ಲೂ ಮುಖ್ಯವಾಗಿ ಕೇಸೀನ್ ಮತ್ತು ವೇ ಪ್ರೊಟೀನುಗಳ ವ್ಯತಿರಿಕ್ತವಾದ ಅನುಪಾತವು, ಮನುಷ್ಯರಲ್ಲಿ ವಿವಿಧ ರೀತಿಯ ಅಲರ್ಜಿ (ಅಸಹಿಷ್ಣುತೆ)ಗಳಿಗೆ ಕಾರಣವಾಗಿ ರೋಗಗಳನ್ನು ಉಂಟು ಮಾಡುತ್ತವೆ ಮತ್ತು ದನದ ಹಾಲಿನ ಅಲರ್ಜಿಯು ಮೊದಲ ವರ್ಷದ ಜೀವಿತಾವಧಿಯಲ್ಲಿ ಬಹಳ ಸಾಮಾನ್ಯವಾಗಿ ಕಂಡುಬರುತ್ತದೆ. [Lara-Villoslada, 2000; Stengler M] ಮೊದಲ ವರ್ಷದಲ್ಲಿ ಶಿಶುವಿಗೆ ದನದ ಹಾಲನ್ನು ಕುಡಿಸುವುದರಿಂದ ಕರುಳಿನ ರಕ್ತಸ್ರಾವ ಮತ್ತು ಕಬ್ಬಿಣದ ಕೊರತೆಯಿಂದಾಗಿ ರಕ್ತಕೊರೆಯಂತಹ ವಿವಿಧ ತೊಂದರೆಗಳು ಕಂಡುಬರಬಹುದು. ಮೊದಲ ವರ್ಷದ ಬಳಿಕ ಪಶುವಿನ ಹಾಲನ್ನು ಕುಡಿಯುವುದರಿಂದ ಮಕ್ಕಳಲ್ಲಿ ಆಗಾಗ ಕಂಡುಬರುವ ಹೊಟ್ಟೆನೋವು, ರಕ್ತನಾಳಗಳ ಒಳಭಿತ್ತಿಯು ಪೆಡಸಾಗುವುದು, ಕಣ್ಣಿನ ಮಸೂರದ ಪರೆ, ಹಾಲಿನಿಂದ ಬರುವ ಸೋಂಕುರೋಗಗಳು ಮತ್ತು ಮಕ್ಕಳ ಅಪರಾಧೀ ಪ್ರವೃತ್ತಿ ಇವೇ ಮುಂತಾದ ತೊಂದರೆಗಳು ಉಂಟಾಗಬಹುದು.[Docena GH, 1996; Høst A, 1994; Oski FA, 1985] ಅಷ್ಟೇ ಅಲ್ಲ, ಮೊಲೆಯುಣಿಸುತ್ತಿರುವ ತಾಯಿಯು ದನದ ಹಾಲನ್ನು ಕುಡಿಯುತ್ತಿದ್ದರೆ, ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳು ಆಕೆಯು ಸ್ರವಿಸುವ ಹಾಲಿನಲ್ಲಿ ಸೇರಿಕೊಂಡು ಮಗುವಿನಲ್ಲಿ ಗಂಭೀರ ಸ್ವರೂಪದ ಅಲರ್ಜಿಗೆ ಕಾರಣವಾಗಬಹುದು.[Lifschitz C, 1988]

ನಾವು ಕುಡಿದ ಹಾಲು ಮೊದಲಾಗಿ ನಮ್ಮ ಪಚನಾಂಗವನ್ನು ಸೇರುವುದರಿಂದ ಅದರ ಮೇಲೆಯೇ ಹಾಲಿನ ದುಷ್ಪರಿಣಾಮಗಳು ಅತ್ಯಧಿಕವಾಗಿರುತ್ತವೆ. ಬಾಯಿಯ ಹುಣ್ಣುಗಳಿಂದ ಹಿಡಿದು ಗಂಭೀರ ಸ್ವರೂಪದ ಕಾಹಿಲೆಗಳಾದ ಕರುಳಿನ ಉರಿಯೂತದಂತಹಾ ಹಲವು ತೊಂದರೆಗಳಿಗೆ ದನದ ಹಾಲು ಕಾರಣವಾಗಬಹುದು. ಈ ವರದಿಗಳನ್ನು ನೋಡಿ:

  • ಪದೇ ಪದೇ ಬಾಯಿಯಲ್ಲಿ ಹುಣ್ಣುಗಳನ್ನು ಅನುಭವಿಸುವವರಲ್ಲಿ ಶೇ.25ರಿಂದ ಶೇ.75ರಷ್ಟು ಸಂದರ್ಭಗಳಲ್ಲಿ ದನದ ಹಾಲಿನ ವಿರುದ್ಧ ಪ್ರತಿಕಾಯ (antibodies) ಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ.[Earl BJ, 1989;Woo SB, 1996]
  •  ಕೃತಕ ಶಿಶು ಆಹಾರವನ್ನು ತಿನ್ನುವ ಶಿಶುಗಳಲ್ಲಿ ದನದ ವೇ ಪ್ರೊಟೀನು ಉದರ ಹಿಂಡುವ ಯಾತನೆಯನ್ನು ಉಂಟುಮಾಡಬಲ್ಲದೆಂದು ಗುರುತಿಸಲಾಗಿದೆ.[Lothe L, 1989]
  • ಮೊಲೆಯುಣಿಸುತ್ತಿರುವ ತಾಯಿಯು ದನದ ಹಾಲನ್ನು ಕುಡಿಯುತ್ತಿದ್ದರೆ, ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳು ಆಕೆಯ ಹಾಲಿನಲ್ಲಿಯೂ ಸ್ರವಿಸಲ್ಪಟ್ಟು ಮಗುವಿನ ಉದರ ಶೂಲೆಗೆ ಕಾರಣವಾಗಬಹುದು ಮತ್ತು ತಾಯಿಯು ದನದ ಹಾಲಿನ ಸೇವನೆಯನ್ನು ನಿಲ್ಲಿಸಿದಾಗ ಶಿಶುವಿನ ಉದರ ಶೂಲೆಯೂ ಶಮನಗೊಳ್ಳುತ್ತದೆ.[Jakobsson I, 1978]
  • ಒಂದು ವರ್ಷಕ್ಕಿಂತ ಕಿರಿಯ ಮಕ್ಕಳಿಂದ ಹಿಡಿದು ಬೆಳೆಯುತ್ತಿರುವ ಮಕ್ಕಳಲ್ಲಿ ಕಂಡುಬರುವ ಜಠರದಿಂದ ಅನ್ನನಾಳಕ್ಕೆ ಪಶ್ಚವಹನವಾಗುವ (Gastroesophageal reflux) ಸಮಸ್ಯೆಯು ದನದ ಹಾಲಿನ ಅಲರ್ಜಿಗೆ ಸಂಬಂಧಿಸಿದ್ದಾಗಿರಬಹುದು.[Forget P, 1985; Iacono G, 1996; Nielsen RG, 2004; Salvatore S, 2002]
  • ದನದ ಹಾಲಿನ ಅಸಹಿಷ್ಣುತೆಯಿಂದಾಗಿ ಜಠರ ಮತ್ತು ಮುಂಗರುಳುಗಳ ಉರಿಯೂತವುಂಟಾಗಿ, ಅದೃಶ್ಯವಾದ ರಕ್ತಸ್ರಾವವೂ, ಅದರಿಂದಾಗಿ ರಕ್ತಕೊರೆಯೂ ಸಂಭವಿಸಬಹುದು [Coello-Ramirez P, 1984] ಮತ್ತು ಜಠರದ ಕೆಲಸಕ್ಕೆ ವ್ಯತ್ಯಯವುಂಟಾಗಿ ಆಹಾರದ ಹೀರುವಿಕೆಗೆ ತೊಂದರೆಯಾಗಬಹುದು.[Kokkonen J, 1979]
  • ಮಕ್ಕಳಲ್ಲಿ ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳಿಂದ ಕರುಳಿನ ಉರಿಯೂತವುಂಟಾಗಬಹುದು[Kokkonen J, 2001] ಮತ್ತು ಇದರಿಂದಾಗಿ ಗುದನಾಳದಿಂದ ರಕ್ತಸ್ರಾವ ಹಾಗೂ ಕರುಳಿನಿಂದ ಅದೃಶ್ಯ ರಕ್ತಸ್ರಾವದಿಂದಾಗಿ ತೀವ್ರ ಸ್ವರೂಪದ ರಕ್ತಕೊರೆಯು ದೊಡ್ದ ವಯಸ್ಸಿನ ಮಕ್ಕಳಲ್ಲಿಯೂ ಉಂಟಾಗಬಹುದು.[Willetts IE, 1999]
  • ದನದ ಹಾಲಿನ ಸೇವನೆಯಿಂದ ವಾಂತಿ ಮತ್ತು/ಯಾ ಬೇಧಿಗಳುಂಟಾಗಿ ಬದುಕುವುದೇ ದುಸ್ತರವೆನಿಸಿದ್ದ ಮಕ್ಕಳಲ್ಲಿ ಆಹಾರದ ಬದಲಾವಣೆಯಿಂದ ಆರೋಗ್ಯದಲ್ಲಿ ಸುಧಾರಣೆಯಾದುದನ್ನು ವರದಿ ಮಾಡಲಾಗಿದೆ.[Vitoria JC, 1979]
  • ಸಣ್ಣ ಮಕ್ಕಳಲ್ಲಿ ದನದ ಹಾಲಿನ ಅಸಹಿಷ್ಣುತೆಯು ದೀರ್ಘಕಾಲದ ಮಲಬದ್ಧತೆಗೂ ಕಾರಣವಾಗಬಹುದು.[Iacono G, 1998]
  • ದನದ ಹಾಲಿನ ಅಸಹಿಷ್ಣುತೆಗೂ ದೊಡ್ದ ಕರುಳಿನ ಉರಿಯೂತಕ್ಕೂ ಸಂಬಂಧವಿದೆಯೆಂದು ಹಲವು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ.[Glassman MS, 1990; Knoflach P, 1987; Pittschieler K, 1990; Samuelsson SM, 1991; Taylor KB, 1961; Truelove SC, 1961] ಸಾಮಾನ್ಯರಿಗೆ ಹೋಲಿಸಿದರೆ, ಕರುಳಿನ ಉರಿಯೂತವಿರುವವರಲ್ಲಿ ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳ ವಿರುದ್ಧವಾದ ಪ್ರತಿಕಾಯಗಳ ಪ್ರಮಾಣವು ಸಾಕಷ್ಟು ಹೆಚ್ಚಿರುವುದನ್ನು ಗುರುತಿಸಲಾಗಿದೆ  [Knoflach P, 1987; Taylor KB, 1961] ಹಾಗೂ ದೊಡ್ದ ಕರುಳಿನ ವೃಣರೂಪಿ ಉರಿಯೂತವಿರುವವರು ಹಾಲನ್ನು ಸೇವಿಸುವುದರಿಂದ ರೋಗಲಕ್ಷಣಗಳು ಉಲ್ಬಣಿಸಬಹುದು.[Samuelsson SM, 1991; Truelove SC, 1961] ತಾಯಿಯ ಹಾಲಿನಲ್ಲಿ ಸ್ರವಿಸಲ್ಪಟ್ಟ ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳಿಂದಾಗಿ ಮೂರು ತಿಂಗಳ ಹುಡುಗನೊಬ್ಬನಲ್ಲಿ ತೀವ್ರ ಸ್ವರೂಪದ ದೊಡ್ಡ ಕರುಳಿನ ಉರಿಯೂತ ಮತ್ತು ಅದರಿಂದಾಗಿ ರಕ್ತಬೇಧಿಯಾದ ವರದಿಯಿದೆ.[Pittschieler K, 1990]
  • ಹಾಲಿನ ಸೇವನೆಗೂ, ಕರುಳಿನ ಅಸಹನೆಗೂ (irritable bowel syndrome) ಸಂಬಂಧವಿರಬಹುದೆನ್ನುವ ವರದಿಗಳೂ ಸಾಕಷ್ಟಿವೆ.[Niec AM, 1998; Vernia P, 1995; Vernia P, 2001; Vernia P, 2004]

ದನದ ಹಾಲು ಮತ್ತು ಅದಕ್ಕೆ ಅಲರ್ಜಿಯು ಶ್ವಾಸಾಂಗದ ಹಲವಾರು ಕಾಹಿಲೆಗಳಿಗೆ ಕಾರಣವಾಗಬಹುದು:

  • ಶಿಶುಗಳಲ್ಲಿ ವರದಿಯಾಗಿರುವ ‘ಹೀನರ’ನ ಕಾಹಿಲೆಗೆ [Heiner syndrome] ದನದ ಹಾಲಿನ ಸೇವನೆಯೇ ಮುಖ್ಯವಾದ ಕಾರಣವಾಗಿದೆ. ಕೆಮ್ಮು, ದಮ್ಮು, ಕಫದಲ್ಲಿ ರಕ್ತ, ಮೂಗು ಮುಚ್ಚುವುದು, ಶ್ವಾಸೋಛ್ವಾಸಕ್ಕೆ ತೊಂದರೆಯಾಗುವುದು, ಆಗಾಗ ಕಿವಿಗಳಲ್ಲಿ ಸೋಂಕುಂಟಾಗುವುದು, ಹಸಿವಿಲ್ಲದಿರುವುದು, ವಾಂತಿ, ಬೇಧಿ, ಹೊಟ್ಟೆನೋವು, ಮಲದಲ್ಲಿ ರಕ್ತಸ್ರಾವ ಮತ್ತು ಬೆಳವಣಿಗೆಯು ಕುಂಠಿತಗೊಳ್ಳುವುದು ಈ ತೊಂದರೆಯ ವಿವಿಧ ಲಕ್ಷಣಗಳಾಗಿವೆ. ಈ ಮಕ್ಕಳ ಎದೆಯ ಕ್ಷ-ಕಿರಣ ಪರೀಕ್ಷೆಯಲ್ಲಿಯೂ ನಿರ್ದಿಷ್ಟವಾದ ತೊಂದರೆಗಳು ಕಂಡುಬರುತ್ತವೆ. ದನದ ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳಿಗೆ ವಿರುದ್ಧವಾದ ಪ್ರತಿಕಾಯಗಳು ಈ ಮಕ್ಕಳಲ್ಲಿ ಬಹಳಷ್ಟು ಹೆಚ್ಚಿನ ಪ್ರಮಾಣದಲ್ಲಿರುತ್ತವೆ. ಹಾಲಿನ ಸೇವನೆಯನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ನಿಲ್ಲಿಸಿದ ಕೆಲವೇ ದಿನಗಳಲ್ಲಿ ರೋಗಲಕ್ಷಣಗಳು ವಾಸಿಯಾಗಿ, ಕೆಲವೇ ವಾರಗಳಲ್ಲಿ ಕ್ಷ-ಕಿರಣ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಗೋಚರಿಸಿದ ತೊಂದರೆಗಳೂ ಮಾಯವಾಗುತ್ತವೆ.[Moissidis et al, 2005]
  • ದನದ ಹಾಲಿನಿಂದ ತಯಾರಿಸಿದ ಶಿಶು ಆಹಾರವನ್ನು ಸೇವಿಸದಿದ್ದರೆ ಮೊದಲ ವರ್ಷದಲ್ಲಿ ಅಸ್ತಮಾ ಯಾ ಉಬ್ಬಸದಿಂದ ಬಳಲುವ ಸಾಧ್ಯತೆಗಳು ಕಡಿಮೆಯಾಗುತ್ತವೆ [Ram FSF] ಹಾಗೂ ಸ್ತನಪಾನ ಮಾಡಿದ ಮಕ್ಕಳನ್ನು ಮೊದಲ ಐದು ವರ್ಷಗಳ ಕಾಲ ಅಧ್ಯಯನ ಮಾಡಿದಾಗ ಅವರಲ್ಲಿ  ಎಲ್ಲಾ ವಿಧದ ಅಸಹಿಷ್ಣುತೆಯ ತೊಂದರೆಗಳು ಕಡಿಮೆಯಿರುವುದು ಕಂಡುಬಂದಿದೆ.[Chandra RK, 1997]
  • ಶೈಶವದಲ್ಲಿ ದನದ ಹಾಲಿನ ಅಸಹಿಷ್ಣುತೆಯನ್ನು ಹೊಂದಿದ್ದ ಮಕ್ಕಳಲ್ಲಿ ಪದೇ ಪದೇ ಕಿವಿಯ ಸೋಂಕುಂಟಾಗುವ ಸಾಧ್ಯತೆಗಳು ಹೆಚ್ಚಿರುತ್ತವೆ ಮತ್ತು ಅದರ ಜೊತೆಗೆ ಶ್ವಾಸಕೋಶಗಳಲ್ಲಿಯೂ ತೊಂದರೆಗಳುಂಟಾಗಬಹುದು.[Juntti H, 1999]
  • ದನದ ಹಾಲಿನ ಮೇದಸ್ಸುಗಳು ಅಸ್ತಮಾ ರೋಗಿಗಳ ಶ್ವಾಸಕೋಶಗಳಲ್ಲಿ ಅನಿಲಗಳ ವಿನಿಮಯಕ್ಕೆ ಅಡ್ಡಿಯನ್ನುಂಟುಮಾಡಬಹುದು ಎಂಬ ವರದಿಗಳಿವೆ.[Haas F, 1991]

ಇಲ್ಲಿಗೆ ಮುಗಿಯಿತೇ? ಇಲ್ಲ, ಇನ್ನೂ ಬಹಳಷ್ಟಿದೆ! ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹ, ಕ್ಯಾನ್ಸರ್ ಗಳು ಇವೇ ಮುಂತಾದ ಗಂಭೀರ ಸ್ವರೂಪದ ಸಮಸ್ಯೆಗಳಿಗೂ ದನದ ಹಾಲಿನ ಸೇವನೆಯು ಕಾರಣವಾಗಿರಬಹುದೆಂದು ಅಧ್ಯಯನಗಳು ಸೂಚಿಸುತ್ತವೆ. ಆರಂಭದ ದಿನಗಳಲ್ಲಿ ದನದ ಹಾಲನ್ನು ಸೇವಿಸುವುದರಿಂದ ಮೇದೋಜೀರಕಾಂಗದ ಬೀಟಾ ಕಣಗಳು ನಾಶ ಹೊಂದಿ ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹಕ್ಕೆ ಕಾರಣವಾಗಬಹುದೆಂದು ಹಲವಾರು ವರದಿಗಳು ಪ್ರಕಟಗೊಂಡಿವೆ:

ಮೊದಲ ಆರು ತಿಂಗಳುಗಳಲ್ಲಿ ಮಗುವಿನ ಕರುಳಿನೊಳಗೆ ಸೇರಿದ್ದೆಲ್ಲವೂ ಸುಲಭವಾಗಿ ಹೀರಲ್ಪಡುವುದರಿಂದ, ಆ ವಯಸ್ಸಿನಲ್ಲಿ ಪ್ರಾಣಿಗಳ ಹಾಲನ್ನು ಮಗುವಿಗೆ ನೀಡುವುದರಿಂದ ಅದು ಸುಲಭವಾಗಿ ಹೀರಲ್ಪಟ್ಟು ಅದರ ಪ್ರೊಟೀನುಗಳಿಂದಾಗಿ ಮಧುಮೇಹದಂತಹ ಹಲವು ತೊಂದರೆಗಳಿಗೆ ಕಾರಣವಾಗುತ್ತದೆ.

  • ಹಾಲಿನ ಪ್ರೊಟೀನುಗಳ ಸೇವನೆಗೂ, ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹದ ಆಪತನಕ್ಕೂ ನೇರವಾದ ಸಂಬಂಧವಿದೆಯೆಂದು ಹಲವಾರು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ, ತಾಯಿಯ ಹಾಲನ್ನು ಮಾತ್ರವೇ ಕುಡಿದ ಮಕ್ಕಳಲ್ಲಿ ಈ ತೊಂದರೆಯು ಕಡಿಮೆಯಿರುವುದು ಕೂಡಾ ಕಂಡುಬಂದಿದೆ.[Scott FW, 1998]
  • ಫಿನ್ಲಾಂಡಿನಲ್ಲಿ ಮಕ್ಕಳ ಮಧುಮೇಹದ ಕುರಿತು ನಡೆಸಿದ ಅಧ್ಯಯನವು ಹೊಸದಾಗಿ ಮಧುಮೇಹಕ್ಕೆ ತುತ್ತಾದ 697 ಮಕ್ಕಳು, ಕಾಹಿಲೆಯಿಲ್ಲದ 415 ಸಹೋದರ ಮಕ್ಕಳು ಮತ್ತು 86ರಷ್ಟು ವಯಸ್ಸು ಮತ್ತು ಲಿಂಗಸಾಮ್ಯತೆಯಿರುವ ಮಕ್ಕಳನ್ನು ಒಳಗೊಂಡಿದ್ದು, ಶೈಶವಾವಸ್ಥೆಯಲ್ಲಿ ಅವರ ಆಹಾರಕ್ರಮ, ಹಾಲಿನ ಸೇವನೆ ಮತ್ತು ಅವರ ರಕ್ತದಲ್ಲಿ ದನದ ಹಾಲಿಗೆ ವಿರುದ್ಧವಾದ ಪ್ರತಿಕಾಯಗಳನ್ನು ಮತ್ತು ಅವುಗಳ ನಡುವಿನ ಸಂಬಂಧಗಳನ್ನು ಅದರಲ್ಲಿ ವಿಶ್ಲೇಷಿಸಲಾಯಿತು. ಸಣ್ಣ ವಯಸ್ಸಿನಲ್ಲಿಯೇ ಆಕಳ ಹಾಲಿನ ಉತ್ಪನ್ನಗಳ ಸೇವನೆಯನ್ನು ಆರಂಭಿಸುವುದರಿಂದ ಮತ್ತು ಕಿರಿವಯಸ್ಸಿನಲ್ಲಿ ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಆಕಳ ಹಾಲಿನ ಸೇವನೆಯಿಂದಾಗಿ ರಕ್ತದಲ್ಲಿ ದನದ ಹಾಲಿಗೆ ವಿರುದ್ಧವಾದ ಪ್ರತಿಕಾಯಗಳ ಮಟ್ಟವು ಹೆಚ್ಚುತ್ತದೆ ಮತ್ತು ದನದ ಹಾಲಿಗೆ ವಿರುದ್ಧವಾದ IgA ಪ್ರತಿಕಾಯಗಳ ಮಟ್ಟವು ಹೆಚ್ಚಿದ್ದರೆ ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹವು ಉಂಟಾಗುವ ಸಾಧ್ಯತೆಯು ಹೆಚ್ಚಿರುತ್ತದೆ ಎಂದು ಈ ಅಧ್ಯಯನವು ತೋರಿಸಿತು.[Virtanen SM, 1994]
  • ತಾಯಿಯ ಹಾಲನ್ನೇ ಏಕೈಕ ಆಹಾರವಾಗಿ ನೀಡುವುದನ್ನು ಕೇವಲ ಕೆಲ ವಾರಗಳಿಗಷ್ಟೇ ಸೀಮಿತಗೊಳಿಸುವುದು ಹಾಗೂ ಹುಟ್ಟಿದ 8 ದಿನಗಳೊಳಗೆ ದನದ ಹಾಲನ್ನು ಕೊಡಲಾರಂಭಿಸುವುದು ಕೂಡಾ ಮಧುಮೇಹದ ಸಾಧ್ಯತೆಗಳನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ.[Gimeno SG, 1997] ಅತಿ ಎಳೆಯ ವಯಸ್ಸಿನಲ್ಲಿಯೇ ಆಕಳ ಹಾಲು ಯಾ ಅದರಿಂದ ತಯಾರಿಸಿದ ಶಿಶು ಆಹಾರಗಳ ಸೇವನೆಯನ್ನು ಆರಂಭಿಸುವುದರಿಂದ ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹವುಂಟಾಗುವ ಸಾಧ್ಯತೆಗಳು ಹೆಚ್ಚುತ್ತವೆಯೆಂದು ಹಲವು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ.[Gerstein HC, 1994; Schrezenmeir J, 2000; Wasmuth HE, 2000]
  • ದನದ ಹಾಲಿನಲ್ಲಿರುವ ವಿವಿಧ ಪ್ರೊಟೀನುಗಳು ಮಧುಮೇಹಜನಕಗಳಾಗಿರಬಹುದು ಎನ್ನುವುದನ್ನು ಪ್ರಾಣಿಗಳಲ್ಲಿ ನಡೆಸಿರುವ ಸಂಶೋಧನೆಗಳು ತೋರಿಸಿವೆ. [Wasmuth HE, 2000] ದನದ ಹಾಲಿನಲ್ಲಿರುವ ಪ್ರೊಟೀನುಗಳಾದ β ಲ್ಯಾಕ್ಟೋಗ್ಲೋಬುಲಿನ್, ಆಲ್ಬುಮಿನ್ ಇತ್ಯಾದಿಗಳಿಗಿದಿರಾದ ಪ್ರತಿಕಾಯಗಳು ಮೊದಲನೇ ವಿಧದ ಮಧುಮೇಹವುಳ್ಳ ಕಿರಿಯರಲ್ಲಿ  ಸಾಕಷ್ಟು ಪ್ರಮಾಣದಲ್ಲಿರುವುದನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದು, ಮಧುಮೇಹವುಂಟಾಗಲು ಇದುವೇ ಕಾರಣವಿರಬಹುದೆಂದು ಅಂದಾಜಿಸಲಾಗಿದೆ.[Dahl-Jorgensen K, 1991; Dahlquist G, 1992; Karjalainen J, 1992; Savilahti E, 1988; Savilahti E, 1993; Wasmuth HE, 2000]

ಪಶುವಿನ ಹಾಲು ಮತ್ತು ಮೊಡವೆಗಳು

ಹದಿಹರೆಯದಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿರುವ ಮೊಡವೆಗಳ ಸಮಸ್ಯೆಗೂ ಹಾಲಿನ ಸೇವನೆಯು ಒಂದು ಮುಖ್ಯವಾದ ಕಾರಣವಾಗಿದೆ.[Cordain L (a); Cordain L (b)] ಹಾಲಿನಲ್ಲಿರುವ ಹಾರ್ಮೋನುಗಳು ಮತ್ತಿತರ ಸಂಯುಕ್ತಗಳು ಮೊಡವೆಗಳಿಗೆ ಕಾರಣವಾಗಬಹುದೆಂದು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ.[Acne; Adebamowo CA, 2005; Adebamowo CA, 2006]

ಬೊಜ್ಜು, ರಕ್ತನಾಳದ ಕಾಹಿಲೆಗಳಿಗೂ ಹಾಲು ಕಾರಣವಿರಬಹುದು

ಜಗತ್ತಿನಾದ್ಯಂತ ಹೆಚ್ಚುತ್ತಿರುವ ಬೊಜ್ಜಿನ ತೊಂದರೆಗೆ ಕಾರಣವಾಗಿರುವ ಆಹಾರಗಳಲ್ಲಿ ಹಾಲು ಕೂಡಾ ಒಂದಾಗಿದೆ.[Pangborn RM, 1985] ರಕ್ತನಾಳಗಳ ಒಳಭಿತ್ತಿಯು ಪೆಡಸಾಗುವುದಕ್ಕೂ ಹಾಲೊಂದು ಪ್ರಮುಖವಾದ ಕಾರಣವಾಗಿದೆ. ಪ್ರಾಣಿಜನ್ಯ ಪ್ರೊಟೀನುಗಳು ರಕ್ತದ ಕೊಲೆಸ್ಟರಾಲ್ ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸುತ್ತವೆ[Kritchevsky D, 1995] ಹಾಗೂ ಹಾಲಿನಲ್ಲಿರುವ ಕೇಸೀನ್ ರಕ್ತನಾಳದ ಒಳಭಿತ್ತಿಯು ಪೆಡಸಾಗುವುದಕ್ಕೆ ಕಾರಣವಾಗಬಹುದೆಂದು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. [Tailford KA, 2003]

ಹಾಲು ಮತ್ತು ಮೂತ್ರಪಿಂಡದ ಹರಳುಗಳು

ಮೂತ್ರಪಿಂಡಗಳಲ್ಲಿ ಹರಳುಗಳಾಗುವುದಕ್ಕೂ ಹಾಲಿನ ಸೇವನೆಯು ಕಾರಣವಿರಬಹುದೆಂದು ವರದಿಗಳಿವೆ. ಮೂತ್ರಪಿಂಡಗಳಲ್ಲಿ ಹರಳುಗಳಿರುವವರು ಹಾಲು ಮತ್ತದರ ಉತ್ಪನ್ನಗಳನ್ನು ಬಹಳವಾಗಿ ಸೇವಿಸುವವರಾಗಿರುತ್ತಾರೆ.[Kwias Z, 1979] ಆಹಾರದಲ್ಲಿ, ಮುಖ್ಯವಾಗಿ ಹಾಲಿನ ರೂಪದಲ್ಲಿ, ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಕ್ಯಾಲ್ಸಿಯಂ ಅನ್ನು ಸೇವಿಸುವುದರಿಂದ ಅದು ಮೂತ್ರದಲ್ಲಿ ವಿಸರ್ಜನೆಗೊಂಡು ಹರಳುಗಳುಂಟಾಗಲು ಕಾರಣವಾಗಬಹುದು.[Goldfarb DS, 1999] ಇತ್ತೀಚೆಗೆ ಗುರುತಿಸಲ್ಪಟ್ಟಿರುವ ನ್ಯಾನೊಬ್ಯಾಕ್ಟೀರಿಯಾಗಳು ಮೂತ್ರಪಿಂಡದ ಹರಳುಗಳುಂಟಾಗಲು ಕಾರಣವಾಗಿರಬಹುದೆಂದು ವರದಿಗಳಿವೆ [ಕೆಳಗೆ ನೋಡಿ].

ದನದ ಹಾಲು ಮತ್ತು ನ್ಯಾನೊಬ್ಯಾಕ್ಟೀರಿಯ

ರಕ್ತನಾಳಗಳ ಒಳಭಿತ್ತಿಯು ಪೆಡಸಾಗಿ ಅದರೊಳಗೆ ಕ್ಯಾಲ್ಸಿಯಂ ಮಡುಗಟ್ಟುವುದಕ್ಕೆ ಕಾರಣವಾಗಬಲ್ಲ ಹಾಗೂ ಮೂತ್ರಪಿಂಡಗಳಲ್ಲಿ ಕ್ಯಾಲ್ಸಿಯಂ ಹರಳುಗಳನ್ನುಂಟುಮಾಡಬಲ್ಲ ಅತಿಸೂಕ್ಷ್ಮ ಜೀವಿಗಳನ್ನು ಮನುಷ್ಯರ ರಕ್ತದಲ್ಲಿ ಗುರುತಿಸಿ, ಕೆಲವು ವಿಜ್ಞಾನಿಗಳು ಇತ್ತೀಚಿನ ವರ್ಷಗಳಲ್ಲಿ ವರದಿ ಮಾಡಿದ್ದಾರೆ. ನ್ಯಾನೊಬ್ಯಾಕ್ಟೀರಿಯಾಗಳೆಂದು ಕರೆಯಲಾಗಿರುವ ಈ ಅತಿಸೂಕ್ಷ್ಮ ಜೀವಿಗಳನ್ನು ದನಗಳ ರಕ್ತದಲ್ಲಿಯೂ ಗುರುತಿಸಲಾಗಿದೆ. ಹಾಲು ಈ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳ ವೃದ್ಧಿಗೆ ನೆರವಾಗುತ್ತದೆಯೆಂದೂ ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. ಈ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳ ಇರುವಿಕೆಯು ಮುಂದಿನ ದಿನಗಳಲ್ಲಿ ಧೃಢಪಟ್ಟದ್ದೇ ಆದರೆ, ಹಾಲಿನ ಮೂಲಕವೇ ಮನುಷ್ಯರಿಗೆ ಈ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳ ಸೋಂಕು ತಗಲುವುದೇ ಮತ್ತು ಮನುಷ್ಯನ ರಕ್ತದಲ್ಲಿ ಹಾಗೂ ಅಂಗಾಂಶಗಳಲ್ಲಿ ಅವುಗಳ ವೃದ್ಧಿಗೆ ಹಾಲು ಕಾರಣವಾಗುತ್ತದೆಯೇ ಎಂಬ ಕೌತುಕದ ಬಗ್ಗೆ ಇನ್ನಷ್ಟು ಅಧ್ಯಯನಗಳಾಗಬಹುದು.[Carson DA, 1998; Ciftcioglu, 1997; Kajander EO; Kajander EO, 1998; Miller VM, 2004]

ಕ್ಷಯರೋಗವೂ ಸೇರಿದಂತೆ ಹಲವು ಸೋಂಕು ರೋಗಗಳಿಗೆ ಹಾಲೇ ಮೂಲವಾಗಿರಬಹುದು.

ಪ್ರಾಣಿಗಳನ್ನು ಹಿಂಡಿ ಸಂಗ್ರಹಿಸಲ್ಪಟ್ಟ ಹಾಲಿನಲ್ಲಿ ಹಲವಾರು ರೋಗಾಣುಗಳು ವಿಪುಲವಾಗಿ ಬೆಳೆಯಲು ಸಾಧ್ಯವಾಗುತ್ತದೆ. ಸ್ಟೆಫಲೋಕಾಕಸ್ ಆರಿಯಸ್, ಸ್ಟ್ರೆಪ್ಟೋಕಾಕಸ್,  ಕಾಮ್ಪಿಲೋಬ್ಯಾಕ್ಟರ್, ಯೆರ್ಸಿನಿಯಾ ಎನ್ಟೆರೊಕೊಲೈಟಿಕಾ, ಲಿಸ್ಟಿರಿಯಾ ಮೊನೊಸೈಟೊಜಿನಸ್, ಎಶಿರಿಷಿಯಾ ಕೊಲೈ, ಎ. ಕೊಲೈ 0157:ಎಚ್ 7, ಶಿಗೆಲ್ಲ, ಸಾಲ್ಮೊನೆಲ್ಲಾ, ಬ್ರುಸೆಲ್ಲ, ಟಾಕ್ಸೋಪ್ಲಾಸ್ಮಾ, ಕ್ಷಯ ರೋಗವನ್ನುಂಟುಮಾಡುವ ಮೈಕೋಬ್ಯಾಕ್ಟೀರಿಯಾ ಇವೇ ಮುಂತಾದ ಬ್ಯಾಕ್ಟೀರಿಯಾಗಳು, ಹೆಪಟೈಟಿಸ್ ಎ ವೈರಾಣು ಇತ್ಯಾದಿಗಳೆಲ್ಲವೂ ಹಾಲಿನ ಮೂಲಕ ಮನುಷ್ಯರಿಗೆ ಹರಡಬಹುದು. [Alvarez VB]

ಪ್ಯಾಶ್ಚೀಕರಣವನ್ನು ವ್ಯಾಪಕವಾಗಿ ಬಳಸುವುದಕ್ಕೆ ಮೊದಲು ಪಶುವಿನ ಹಾಲು ಕ್ಷಯ ರೋಗವೂ ಸೇರಿದಂತೆ ಹಲವು ತರದ ಸೋಂಕು ರೋಗಗಳ ಹರಡುವಿಕೆಗೆ ಕಾರಣವಾಗಿತ್ತು ಹಾಗೂ ತಾಯಿಯ ಹಾಲಲ್ಲದೆ ಇತರ ಆಹಾರವನ್ನು ಪಡೆಯುತ್ತಿದ್ದ ಶಿಶುಗಳಲ್ಲಿ ಬೇಧಿಯ ಪ್ರಕರಣಗಳು ತೀರಾ ಸಾಮಾನ್ಯವಾಗಿದ್ದವು.[Atkins PJ, 1992] 1982ರ ಜೂನ್ ಮತ್ತು ಜುಲೈ ತಿಂಗಳುಗಳಲ್ಲಿ ಅಮೆರಿಕಾದ ಟೆನಿಸ್ಸೀ, ಅರ್ಕಾನ್ಸಾಸ್ ಮತ್ತು ಮಿಸ್ಸಿಸಿಪ್ಪಿ ರಾಜ್ಯಗಳಲ್ಲಿ ತೀವ್ರ ಸ್ವರೂಪದ ಕರುಳುಬೇನೆ ಹಾಗೂ ಬೇಧಿಯ ಹಲವಾರು ಪ್ರಕರಣಗಳು ವರದಿಯಾದವು. ಒಂದು ನಿರ್ದಿಷ್ಟವಾದ ಪ್ಯಾಶ್ಚೀಕರಣ ಘಟಕದಿಂದ ಹೊರಬಂದಿದ್ದ ಹಾಲಿಗೂ ಈ ಪ್ರಕರಣಗಳಿಗೂ ಸಂಬಂಧವಿರುವುದನ್ನು ತನಿಖೆಯಲ್ಲಿ ಗುರುತಿಸಲಾಯಿತು.[Tacket CO, 1984] ಹಾಲಿನ ಬಳಕೆಯಿಂದ ಕ್ಷಯ ರೋಗವು ಹರಡುವ ಸಾಧ್ಯತೆಗಳನ್ನು ಹಲವು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ. ಪ್ಯಾಶ್ಚೀಕರಿಸದ ಹಾಲಿನ ಮೂಲಕ ಮೈಕೊಬ್ಯಾಕ್ಟೀರಿಯಂ ಬೋವಿಸ್  ಸೋಂಕು ತಗಲಿ ಕರುಳಿನ ಕ್ಷಯರೋಗ, [Ayele WY, 2004; Leite CQF, 2003] ನಾಲಗೆಯ ಕ್ಷಯರೋಗ [Pande TK, 1995] ಕತ್ತಿನ ದುಗ್ಧರಸ ಗ್ರಂಥಿಗಳ ಕ್ಷಯ, ಉದರದ ಕ್ಷಯ ಮತ್ತಿತರ ಪುಪ್ಪುಸೇತರ ಅಂಗಗಳ ಕ್ಷಯ ರೋಗವು [Cosivi O, 1998] ಉಂಟಾಗಬಹುದು. ಶ್ವಾಸಕೋಶದ ಕ್ಷಯರೋಗವು ದನದ ಹಾಲನ್ನು ಸೇವಿಸುವವರಲ್ಲಿ ಹೆಚ್ಚು ಸಾಮಾನ್ಯವೆಂದು ರಷ್ಯದ ಅಧ್ಯಯನವೊಂದು ತೋರಿಸಿದೆ.[Coker R, 2006]

ಹಾಲಿನ ಸೇವನೆಯು ಹಲವು ವಿಧದ ಕ್ಯಾನ್ಸರ್ ರೋಗಕ್ಕೂ ಕಾರಣವಾಗಬಹುದೆಂದು ಅಧ್ಯಯನಗಳು ಸೂಚಿಸುತ್ತವೆ:

ಮನುಕುಲಕ್ಕೆ ದೊಡ್ಡ ಸವಾಲಾಗಿರುವ ಮತ್ತು ದಿನೇ ದಿನೇ ಹೆಚ್ಕು ಹೆಚ್ಚು ಜನರನ್ನು, ಅದರಲ್ಲೂ ಕಿರಿವಯಸ್ಕರನ್ನು ಕಾಡುತ್ತಿರುವ ಕ್ಯಾನ್ಸರ್ ರೋಗಕ್ಕೆ ಹಾಲಿನ ಸೇವನೆಯು ಕಾರಣವಾಗಿರಬಹುದೆಂದು ಹಲವಾರು ವರದಿಗಳು ಸೂಚಿಸಿವೆ. ಸ್ತನ, ಶುಕ್ಲ ಗ್ರಂಥಿ, ಅಂಡಾಶಯಗಳು, ಮೂತ್ರಪಿಂಡಗಳು, ಸ್ತ್ರೀ ಪ್ರಜನನಾಂಗಗಳು (ಗರ್ಭನಾಳವನ್ನು ಹೊರತು ಪಡಿಸಿ), ವೃಷಣಗಳು, ಶ್ವಾಸಕೋಶಗಳು, ದುಗ್ಧರಸ ಗ್ರಂಥಿಗಳು ಮತ್ತು ರಕ್ತದ ಕ್ಯಾನ್ಸರ್ ಗಳಿಗೂ ಹಾಲಿನ ಸೇವನೆಗೂ ಸಂಬಂಧವಿರುವುದನ್ನು ಅಧ್ಯಯನಗಳು ದೃಢಪಡಿಸಿವೆ. ಹಾಲಿನಲ್ಲಿರುವ ವಿವಿಧ ಬೆಳೆತ ಪ್ರಚೋದಕಗಳು ಕ್ಯಾನ್ಸರಿನ ಬೆಳವಣಿಗೆಯನ್ನು ಪ್ರಚೋದಿಸುತ್ತವೆಯೆನ್ನುವುದಕ್ಕೆ ಸಾಕಷ್ಟು ಅಧಾರಗಳಿವೆ. [Buehring GC, 2003; Chan JM, 2001; Davies TW, 1996; Epstein SS, 1996; Ferrer JF, 1981; Ganmaa D, 2002; Ganmaa D, 2003; Garner MJ, 2003; Larsen HR; Li D, 2003; Matsumoto M, 2007; Mettlin C, 1989; Mettlin CJ, 1991; Milk Causes Cancer; Oransky I; Park Y, 2007; Park SY, 2007; PCRM; Qin LQ,  2004; Rose DP, 1986; Sigurdson AJ, 1999; Stang A, 2006; Stewart A, 2004; Studies; Ursin G, 1990; Ward MH, 1994; Zheng T, 2004]

ಇಷ್ಟೆಲ್ಲಾ ಇದ್ದರೂ, ಮೂಳೆಸವೆತವನ್ನು ತಡೆಯಲು ಕ್ಯಾಲ್ಸಿಯಂ ಅಗತ್ಯವೆಂದೂ, ಅದಕ್ಕಾಗಿ ಅಧಿಕ ಪ್ರಮಾಣದಲ್ಲಿ ಹಾಲನ್ನು ಕುಡಿಯುತ್ತಿರಬೇಕೆಂದೂ ಪ್ರಚಾರ ಮಾಡಲಾಗುತ್ತಿದೆ ಮತ್ತು ಸಹಜವಾಗಿಯೇ, ಹೈನೋದ್ಯಮದ ಸಂಪೂರ್ಣವಾದ ಬೆಂಬಲವು ಇದಕ್ಕಿದೆ. [Dairy’s Role] ವಾಸ್ತವದಲ್ಲಿ, ಹಾಲಿನ ಸೇವನೆಯಿಂದ ಮನುಷ್ಯನ ಆರೋಗ್ಯಕ್ಕೆ ಲಾಭವಿದೆಯೆಂದು ಹೇಳಲಾಗಿರುವ ಹಲವಾರು ವೈಜ್ಞಾನಿಕ ಲೇಖನಗಳ ಬರಹಗಾರರಿಗೆ ಹೈನೋದ್ಯಮ ಹಾಗೂ ಅದಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಕೃಷಿ ಹಾಗೂ ಹೈನುಗಾರಿಕಾ ವಿದ್ಯಾಲಯಗಳ ನೆರವು ಲಭ್ಯವಾಗಿರುವುದನ್ನು ಕಾಣಬಹುದು [ಅದಕ್ಕೆ ಕೆಲ ಉದಾಹರಣೆಗಳು ಇಲ್ಲಿವೆ: Jean Woo, 2007 ಬೆಂಬಲಕ್ಕೆ Fonterra Brands; Fiorito LM, 2006 ಬೆಂಬಲಕ್ಕೆ The National Dairy Council; Cadogan J, 1997 ಬೆಂಬಲಕ್ಕೆ UK Dairy Industry; Black RE, 2002 ಬೆಂಬಲಕ್ಕೆNew Zealand Milk. ಹೀಗಿದ್ದರೂ, ಈ ಲೇಖನಗಳ ತಯಾರಿಯಲ್ಲಿ ಯಾವುದೇ ‘ಹಿತಾಸಕ್ತಿಗಳ ತಾಲಕಾಟವಿಲ್ಲ’ ಎಂದೇ ಹೇಳಿಕೊಳ್ಳಲಾಗಿದೆ!] ಆದರೆ, ಮೂಳೆಗಳ ಆರೋಗ್ಯಕ್ಕೆ ಹಾಗೂ ಕ್ಯಾಲ್ಸಿಯಂ ಸೇವನೆಗೆ ಹಾಲೇ ಅತ್ಯುತ್ತಮವಾದ ಆಹಾರವೆನ್ನುವುದಕ್ಕೆ ಯವುದೇ ಆಧಾರಗಳಿಲ್ಲ. [Weinsier RL, 2000] ಬದಲಾಗಿ, ಪಶುವಿನ ಹಾಲಿನ ಸೇವನೆಯಿಂದ ಮೂಳೆಸವೆತ ಹಾಗೂ ಮೂಳೆಮುರಿತದ ಅಪಾಯಗಳು ಹೆಚ್ಚುತ್ತವೆ ಎನ್ನುವುದನ್ನು ಅಧ್ಯಯನಗಳು ತೋರಿಸಿವೆ:

  • ಅಮೆರಿಕಾದ ಪ್ರತಿಷ್ಠಿತ ವೈದ್ಯಕೀಯ ಸಂಸ್ಥೆಯಾದ ಮಾಸಚುಸೆಟ್ಸ್ ನ ಹಾರ್ವರ್ಡ್ ಮೆಡಿಕಲ್ ಸ್ಕೂಲ್ ನಲ್ಲಿ ಕ್ಯಾಲ್ಸಿಯಂ ಮತ್ತು ಮೂಳೆಗಳ ಆರೋಗ್ಯದ ಬಗ್ಗೆ 77761 ಮಹಿಳೆಯರನ್ನೊಳಗೊಂಡ 12 ವರ್ಷಗಳ ಕಾಲದ ಅಧ್ಯಯನವೊಂದನ್ನು 1980ರಲ್ಲಿ ನಡೆಸಲಾಯಿತು. ಹಿಂದೆಂದೂ ಕ್ಯಾಲ್ಸಿಯಂ ಅನ್ನು ಹೆಚ್ಚಾಗಿ ತೆಗೆದುಕೊಳ್ಳದೇ ಇದ್ದ 34ರಿಂದ 59ವರ್ಷ ವಯಸ್ಸಿನ ಮಹಿಳೆಯರನ್ನೊಳಗೊಂಡಿದ್ದ ಈ ಅಧ್ಯಯನದಲ್ಲಿ, ಹಾಲು ಅಥವಾ ಆಹಾರದ ಮೂಲಕ ಅಧಿಕ ಕ್ಯಾಲ್ಸಿಯಂ ಅನ್ನು ಸೇವಿಸಿದ ಮಹಿಳೆಯರಲ್ಲಿ ಮೂಳೆ ಮುರಿತದ ಅಪಾಯವು ಕಡಿಮೆಯಾಗುತ್ತದೆಯೆನ್ನುವುದಕ್ಕೆ ಯಾವುದೇ ಅಧಾರಗಳಿಲ್ಲ ಎಂದು ಕಂಡು ಬಂದಿತು. ವಾರಕ್ಕೆ ಒಂದು ಲೋಟ ಯಾ ಅದಕ್ಕಿಂತ ಕಡಿಮೆ ಪ್ರಮಾಣದಲ್ಲಿ ಹಾಲನ್ನು ಸೇವಿಸುತ್ತಿದ್ದ ಮಹಿಳೆಯರಿಗೆ ಹೋಲಿಸಿದಾಗ, ದಿನಕ್ಕೆರಡು ಲೋಟ ಅಥವಾ ಅದಕ್ಕೂ ಹೆಚ್ಚು ಪ್ರಮಾಣದಲ್ಲಿ ಹಾಲನ್ನು ಸೇವಿಸುತ್ತಿದ್ದ ಮಹಿಳೆಯರಲ್ಲಿ ತೊಡೆಯ ಮೂಳೆಮುರಿತ ಹಾಗೂ ಮುಂದೋಳಿನ ಮೂಳೆಮುರಿತದ ಸಂಭಾವ್ಯತೆಯು ಹೆಚ್ಚಿತ್ತು.[Feskanich D, 1997]
  • ಹಾರ್ವರ್ಡ್ ಮೆಡಿಕಲ್ ಸ್ಕೂಲ್ ನಲ್ಲಿ 72337 ಋತುಬಂಧಾನಂತರದ ಮಹಿಳೆಯರಲ್ಲಿ 18 ವರ್ಷಗಳ ಕಾಲ ನಡೆಸಿದ ಅಧ್ಯಯನದಲ್ಲಿ, ಹಾಲು ಅಥವಾ ಇತರ ಕ್ಯಾಲ್ಸಿಯಂ ಪ್ರಮಾಣವು ಅಧಿಕವಾಗಿರುವ ಆಹಾರ ಸೇವನೆಯು ತೊಡೆಯ ಮೂಳೆಮುರಿತದಿಂದ ರಕ್ಷಣೆಯನ್ನೊದಗಿಸುವುದಿಲ್ಲವೆಂದು ತಿಳಿದು ಬಂದಿದೆ.[Feskanich D, 2003]
  • ಆರು ಗುಂಪುಗಳಲ್ಲಿ 39563 ಪುರುಷರು ಮತ್ತು ಮಹಿಳೆಯರನ್ನು ಅಧ್ಯಯನಕ್ಕೊಳಪಡಿಸಿದಾಗ, ಅಲ್ಪ ಕ್ಯಾಲ್ಸಿಯಂ  (ದಿನವೊಂದಕ್ಕೆ ಒಂದು ಲೋಟಕ್ಕಿಂತಲೂ ಕಡಿಮೆ ಪ್ರಮಾಣದಲ್ಲಿ ಹಾಲು) ಸೇವನೆಯಿಂದ ಯಾವುದೇ ಮೂಳೆಮುರಿತವು – ಮೂಳೆಸವೆತದಿಂದಾಗಿ ಮೂಳೆಮುರಿತವಾಗಲೀ ಅಥವಾ ತೊಡೆಯ ಮೂಳೆಮುರಿತವಾಗಲೀ –  ಹೆಚ್ಚಾಗುವುದಿಲ್ಲ ಎಂಬುದು ಕಂಡುಬಂದಿದೆ.[Kanis JA, 2005]

ಆದ್ದರಿಂದ ಹಾಲು ಮತ್ತದರ ಕ್ಯಾಲ್ಸಿಯಂ, ಮೂಳೆಸವೆತ ಹಾಗೂ ಮೂಳೆಮುರಿತಗಳನ್ನು ತಡೆಯುವ ಬದಲಾಗಿ ಅವನ್ನು ಹೆಚ್ಚಿಸುತ್ತವೆಯೆಂದೇ ಹೇಳಬೇಕಾಗುತ್ತದೆ. [Calcium and Bone; Got Osteoporosis] ಅದೇಕೆ, ನಿಮ್ಮ ಚಹಾದಲ್ಲಿ ಸ್ವಲ್ಪ ಹಾಲನ್ನು ಬೆರೆಸುವುದರಿಂದ ಚಹಾದ ಒಳ್ಳೆಯ ಗುಣಗಳು ಕೂಡಾ ನಾಶವಾಗುತ್ತವೆಯೆಂದು ವರದಿಯಾಗಿದೆ.[Lorenz M, 2007] ಹಾಗಾಗಿ, ಮಕ್ಕಳಿಗೆ ಕ್ಯಾಲ್ಸಿಯಂ ಅನ್ನು ಒದಗಿಸಲು ಹಾಲಿನ ಬದಲಾಗಿ ಇತರ ಕ್ಯಾಲ್ಸಿಯಂಯುಕ್ತ ಆಹಾರವನ್ನು ನೀಡುವುದೊಳಿತು ಎನ್ನುವ ಅಭಿಪ್ರಾಯವು ಬಲಗೊಳ್ಳುತ್ತಲಿದೆ. [Lanou AJ, 2005]

ಆದ್ದರಿಂದ ಹಲವು ವಿಧದ ರೋಗಗಳಿಗೆ ಬಲಿಯಾಗದೇ, ಮೂಳೆಗಳನ್ನು ಗಟ್ಟಿಯಾಗಿರಿಸಿಕೊಂಡು ಬಹುಕಾಲ ಬಾಳ ಬೇಕೆ? ಪಶು ಹಾಲಿನ ಪಾನವನ್ನು ಇಂದೇ ನಿಲ್ಲಿಸಿ!

References

  1. Acne, Milk And The Iodine Connection. Science Daily (Dec. 8, 2005). At
  2. http://www.sciencedaily.com/releases/2005/12/051207181144.htm
  3. Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD. High school dietary dairy intake and teenage acne. J Am Acad Dermatol. 2005 Feb;52(2):207-14. At
  4. http://www.ncbi.nlm.nih.gov/pubmed/15692464
  5. Adebamowo CA et al. Milk Consumption and Acne in Adolescent Girls. Dermatol Online J.  2006;12(4) At http://dermatology.cdlib.org/124/original/acne/danby.html
  6. Alexe D, Syridou G, Petridou ET. Determinants of Early Life Leptin Levels and Later Life Degenerative Outcomes. Clin Med Res. 2006;4(4):326–335 At http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1764811
  7. Almås H, Holm H, Aabakken L et al. In vitro digestion of bovine and caprine milks by human gastric enzymes – peptide profiling and antibacterial effects. Avialable at http://milkgenomics.fil-idf-pr.com/Poster15Almaas.pdf
  8. Alvarez VB, Parada-Rabell F. Health Benefits, Risks, and Regulations of Raw and Pasteurized Milk . Available at http://ohioline.osu.edu/fse-fact/pdf/0003.pdf
  9. Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: a meta-analysis. American Journal of Clinical Nutrition 1999;70(4):525-535 At http://www.ajcn.org/cgi/content/full/70/4/525
  10. Atkins PJ. White Poison? The Social Consequences of Milk Consumption, 1850–1930. Social History of Medicine 1992 5(2):207-227 At http://shm.oxfordjournals.org/cgi/content/abstract/5/2/207
  11. Ayele WY. Bovine tuberculosis: an old disease but a new threat to Africa. The International Journal of Tuberculosis and Lung Disease 2004;8(8):924-937(14) At http://docstore.ingenta.com/
  12. Baby growth charts to be revised At http://news.bbc.co.uk/1/hi/health/4938234.stm
  13. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. American Journal of Clinical Nutrition 2002;76(3):675-680. Available at http://www.ajcn.org/cgi/content/full/76/3/675
  14. Bonnet M, Delavaud C, Karine Laud K et al. Mammary leptin synthesis, milk leptin and their putative physiological roles Reprod. Nutr. Dev. 2002;42:399–413 At http://rnd.edpsciences.org/index.php?option=article&access=standard&Itemid=129&url=/articles/rnd/pdf/2002/06/02.pdf
  15. Bonyata K. Average Growth Patterns of Breastfed Babies. At http://www.kellymom.com/babyconcerns/growth/growthcharts.html
  16. Bouret SG, Draper SJ, Simerly RB. Trophic Action of Leptin on Hypothalamic Neurons That Regulate Feeding. Science 2004a;304(5667):108-110 At http://www.sciencemag.org/cgi/content/abstract/304/5667/108
  17. Bouret SG, Draper SJ, Simerly RB. Formation of Projection Pathways from the Arcuate Nucleus of the Hypothalamus to Hypothalamic Regions Implicated in the Neural Control of Feeding Behavior in Mice. The Journal of Neuroscience 2004b;24(11):2797-2805 At http://www.jneurosci.org/cgi/content/full/24/11/2797
  18. Bouret SG, Simerly RB. Minireview: Leptin and Development of Hypothalamic Feeding Circuits. Endocrinology 2004c;45(6):2621-2626 At http://endo.endojournals.org/cgi/content/full/145/6/2621
  19. Breastfeeding and the Use of Human Milk. Pediatrics 2005;115(2):496-506 At http://aappolicy.aappublications.org/cgi/content/full/pediatrics;115/2/496
  20. Brief History of Cow’s Milk. Available at http://www.milkprocon.org/history.htm
  21. Buehring GC, Philpott SM, Choi KY. Humans have antibodies reactive with Bovine leukemia virus. AIDS Res Hum Retroviruses. 2003;19(12):1105-13 At http://www.ncbi.nlm.nih.gov/sites/entrez
  22. Carson DA. An infectious origin of extraskeletal calcification. Proc Natl Acad Sci. 1998;95(14):7846–7847. At http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=33867
  23. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255-1260 Available at http://www.bmj.com/cgi/content/full/315/7118/1255
  24. Calcium and Bone Disease At http://notmilk.com/deb/092098.html
  25. Casabiell X, Piñeiro V, Tomé MA, Peinó R, Dieguez C, Casanueva FF. Presence of Leptin in Colostrum and/or Breast Milk from Lactating Mothers: A Potential Role in the Regulation of Neonatal Food Intake. The Journal of Clinical Endocrinology & Metabolism 1997;82(12):4270-4273. At http://jcem.endojournals.org/cgi/content/full/82/12/4270
  26. CDC at http://www.cdc.gov/breastfeeding/faq/index.htm
  27. Chan JM, Giovannucci EL. Dairy Products, Calcium, and Vitamin D and Risk of Prostate Cancer. Epidemiol Rev 2001;23(1). At http://epirev.oxfordjournals.org/cgi/reprint/23/1/87
  28. Chandra RK. Five-Year Follow-Up of High-Risk Infants with Family History of Allergy Who Were Exclusively Breast-Fed or Fed Partial Whey Hydrolysate, Soy, and Conventional Cow’s Milk Formulas. Journal of Pediatric Gastroenterology & Nutrition. 1997;24(4):380-388. At http://www.jpgn.org/pt/re/jpgn/abstract
  29. Ciftcioglu N, Pelttari A, Kajander EO. Extraordinary growth phases of nanobacteria isolated from mammalian blood. From Proceedings of SPIE — Volume 3111. Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, Richard B. Hoover, Editor, July 1997, pp. 429-435 At http://spiedl.aip.org/getabs/servlet/GetabsServlet
  30. http://www.cip.ukcentre.com/milk1.htm
  31. Clement A. Adebamowo et al. High school dietary dairy intake and teenage acne Journal of the American Academy of Dermatology 2005;52(2):207-214. At http://www.sciencedirect.com/science?_ob=ArticleURL
  32. Coello-Ramirez P, Larrosa-Haro A. Gastrointestinal occult hemorrhage and gastroduodenitis in cow’s milk protein intolerance. J Pediatr Gastroenterol Nutr. 1984;3(2):215-8. At http://www.ncbi.nlm.nih.gov/sites/entrez
  33. Coker R et al. Risk factors for pulmonary tuberculosis in Russia: case-control study. BMJ  2006;332:85-87 At http://www.bmj.com/cgi/content/full/332/7533/85
  34. Cordain L. Implications for the Role of Diet in Acne At http://thepaleodiet.com/articles/Final%20Acne%20Article.pdf
  35. Cordain L. Dietary Implications for the Development of Acne: A Shifting Paradigm At http://thepaleodiet.com/articles/Cordain%20US%20Dermatology%20Reviews.pdf
  36. Cosivi O et al. Zoonotic Tuberculosis due to Mycobacterium bovis in Developing Countries. Emer Infect Dis 1998;4(1) At http://www.cdc.gov/ncidod/EID/vol4no1/cosivi.htm
  37. Dahl-Jorgensen K, Joner G, Hanssen KF. Relationship between cows’ milk consumption and incidence of IDDM in childhood. Diabetes Care 1991;14(11):1081-1083 At http://care.diabetesjournals.org/cgi/content/abstract/14/11/1081
  38. Dahlquist G, Savilahti E, Landin-Olsson M. An increased level of antibodies to ltoglobulin is a risk determinant for early-onset Type 1 (insulin-dependent) diabetes mellitus independent of islet cell antibodies and early introduction of cow’s milk. Diabetologia. 1992;35(10)  At http://www.springerlink.com/content/t6m3530r57v3wj60/
  39. Dairyforall a At http://www.dairyforall.com/goatmilk-composition.php
  40. Dairyforall b At http://www.dairyforall.com/humanmilk-comp.php
  41. Dairyforall c At http://www.dairyforall.com/composition-of-milk.php
  42. Dairy’s Role in Bone Health Available at http://www.nationaldairycouncil.org/NationalDairyCouncil/Nutrition/Products/DairysRoleinBoneHealth.htm
  43. Davies TW, Palmer CR, Ruja E, Lipscombe JM. Adolescent milk, dairy product and fruit consumption and testicular cancer. Br J Cancer 1996;74:657–60.[Medline]
  44. Dewey KG. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. Biology of the Neonate 1998;74:94-105 Available at http://content.karger.com/
  45. Docena GH, Fernandez R, Chirdo FG, Fossati CA. Identification of casein as the major allergenic and antigenic protein of cow’s milk Allergy 1996;51(6):412–416 At http://www.blackwell-synergy.com/doi/abs/10.1111/j.1398-9995.1996.tb00151.x
  46. Earl BJ, Plewa MC, Dobson JE. Aphthous Ulcers At http://www.emedicine.com/PED/topic2672.htm
  47. El-Haddad MA, Desai M, Gayle D, Ross MG. In Utero Development of Fetal Thirst and Appetite: Potential for Programming. Journal of the Society for Gynecologic Investigation 2004;11(3):123-130 At http://rsx.sagepub.com/cgi/content/abstract/11/3/123
  48. Epstein SS. Unlabeled milk from cows treated with biosynthetic growth hormones: a case of regulatory abdication.Int J Health Serv. 1996;26(1):173-85
  49. Ferrer JF, Kenyon SJ, Gupta P. Milk of dairy cows frequently contains a leukemogenic virus. Science 1981;213(4511):1014-1016. At http://www.sciencemag.org/cgi/content/abstract/213/4511/1014
  50. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. Milk, dietary calcium, and bone fractures in women: a 12-year prospective study. American Journal of Public Health 1997;87(6):992-997 At http://www.ajph.org/cgi/reprint/87/6/992
  51. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. American Journal of Clinical Nutrition 2003;77(2):504-511. At http://www.ajcn.org/cgi/content/full/77/2/504
  52. Fiorito LM, Mitchell DC, Smiciklas-Wright H, Birch LL. Girls’ Calcium Intake Is Associated with Bone Mineral Content During Middle Childhood. J. Nutr. 2006;136:1281-1286. Available at http://jn.nutrition.org/cgi/content/full/136/5/1281
  53. http://www.foodsci.uoguelph.ca/dairyedu/intro.html
  54. Forget P, Arends JW. Cow’s milk protein allergy and gastro-oesophageal reflux. European Journal of Pediatrics 1985;144(4) At http://www.springerlink.com/content/r03113231q411126/
  55. Ganmaa D, Wang PY, Qin LQ, Hoshi K, Sato A. Is milk responsible for male reproductive disorders? Medical Hypotheses 2001;57:510-4. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/femalecancer.html
  56. Ganmaa D, Li XM, Wang J, Qin LQ, Wang PY, Sato A. Incidence and Mortality of Testicular and Prostatic Cancers in Relation to World Dietary Practices. International Journal of Cancer 2002;98:262-7. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/IJCTP.html
  57. Ganmaa D, Li XM, Qin LQ, Wang PY, Takeda M, Sato A. The Experience of Japan as a Clue to the Etiology of Testicular and Prostatic Cancers. Medical Hypotheses 2003;60:724-30. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/JapExp.html
  58. Garner MJ, Birkett NJ, Johnson KC, Shatenstein B, Ghadirian P, Kreswski D. Dietary risk factors for testicular carcinoma. Int J Cancer 2003;106:934–41.[Medline]
  59. Gerstein HC. Cow’s milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care. 1994;17(1):13-19 At http://care.diabetesjournals.org/cgi/content/abstract/17/1/13
  60. Gimeno SG,  de Souza JM. IDDM and milk consumption. A case-control study in Sao Paulo, Brazil. Diabetes Care 1997;20(8):1256-1260 At http://care.diabetesjournals.org/cgi/content/abstract/20/8/1256
  61. Glassman MS, Newman LJ, Berezin S, Gryboski JD. Cow’s milk protein sensitivity during infancy in patients with inflammatory bowel disease. Am J Gastroenterol. 1990;85(7):838-40. At http://www.ncbi.nlm.nih.gov/sites/entrez
  62. Goldfarb DS, Coe FL. Prevention of Recurrent Nephrolithiasis. American Family Physician 1999;60(8) At http://newcms.aafp.org/afp/991115ap/2269.html
  63. Got Osteoporosis from Milk? At http://milk.elehost.com/html/osteoporosis.html
  64. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: A life history and evolutionary perspective. American Journal of Human Biology. 2006;19(1):1-19 At http://www3.interscience.wiley.com/cgi-bin/abstract/113509381/ABSTRACT?CRETRY=1&SRETRY=0
  65. Grosvenor CE, Picciano MF, Buamrucker CR. Hormones and Growth Factors in Milk. Endocrine Reviews. 1993;14():710-728 Available at At http://edrv.endojournals.org/cgi/reprint/14/6/710
  66. Gupta A. Initiating breastfeeding within one hour of birth: A scientific brief. At http://www.bpni.org/Article/Initiating_breastfeeding_within_one_hour.pdf
  67. Gunderson EP. Breastfeeding After Gestational Diabetes Pregnancy, Subsequent obesity and type 2 diabetes in women and their offspring Diabetes Care 2007;30:S161-S168 At http://care.diabetesjournals.org/cgi/content/full/30/Supplement_2/S161
  68. Haas F. Effect of milk ingestion on pulmonary function in healthy and asthmatic subjects. J Asthma. 1991;28(5):349-55. At http://www.ncbi.nlm.nih.gov/sites/entrez
  69. Hamosh M. Breastfeeding: Unraveling the Mysteries of Mother’s Milk Medscape General Medicine. Posted 09/15/1996 Available at http://www.medscape.com/viewarticle/408813_1
  70. Hawkes N. Mothers who switched from breast to bottle ‘were misled’. Available at http://www.timesonline.co.uk/tol/life_and_style/health/article1857052.ece
  71. Health Effects of Cows’ Milk. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/
  72. Hoppe C, Mølgaard C, Michaelsen KF. Cow’s Milk and Linear Growth in Industrialized and Developing Countries. Annual Review of Nutrition. 2006;26:131-173. Available at http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nutr.26.010506.103757
  73. Hoshimoto K, Ohkura T. Vascular endothelial growth factor in human milk. British Journal of Biomedical Science. 2000. Available at http://findarticles.com/p/articles/mi_qa3874/is_200001/ai_n8888572
  74. Høst A. Cow’s milk protein allergy and intolerance in infancy. Some clinical, epidemiological and immunological aspects. Pediatr Allergy Immunol. 1994;5(5 Suppl):1-36 At http://www.ncbi.nlm.nih.gov/sites/entrez
  75. Iacono G et al. Gastroesophageal reflux and cow’s milk allergy in infants: a prospective study. J Allergy Clin Immunol. 1996;97(3):822-7 At http://www.ncbi.nlm.nih.gov/sites/entrez
  76. Iacono G. Intolerance of cow’s milk and chronic constipation in children. N Engl J Med. 1998;339(16):1100-4 At http://www.ncbi.nlm.nih.gov/sites/entrez
  77. Jakobsson I, Lindberg ST. Cow’s milk as a cause of infantile colic in breast-fed infants. Lancet. 1978;2(8087):437-9
  78. Juntti H, Tikkanen S, Kokkonen J, Alho O, Äki AN. Cow’s Milk Allergy is Associated with Recurrent Otitis Media During Childhood. Acta Oto-Laryngologica 1999;119(8):867 – 873 At http://www.informaworld.com/smpp/content~content=a713792025~db=all
  79. Kajander EO et al. Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth At http://www.nanobac.fi/Klin%20lab/Abs_autonomously.pdf
  80. Kajander EO, Çiftçioglu N. Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci 1998;95(14):8274-8279 At http://www.pnas.org/cgi/content/full/95/14/8274
  81. Kanis JA et al. A meta-analysis of milk intake and fracture risk: low utility for case finding Osteoporosis International 2005;16(7):799-804 At http://www.springerlink.com/content/hnanbfeck22fdpd7/
  82. Karjalainen J et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus NEJM 1992;327(5):302-307 At http://content.nejm.org/cgi/content/abstract/327/5/302
  83. Kritchevsky D. Dietary Protein, Cholesterol and Atherosclerosis: A Review of the Early History. Journal of Nutrition 1995;125(3_Suppl):589-593. At http://jn.nutrition.org/cgi/reprint/125/3_Suppl/589S
  84. Kitazawa H, Yonezawa K, Tohno M et al. Enzymatic digestion of the milk protein beta-casein releases potent chemotactic peptide(s) for monocytes and macrophages. Int Immunopharmacol. 2007 Sep;7(9):1150-9.
  85. Knoflach P, Park BH, Cunningham R, Weiser MM, Albini B. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease. Gastroenterology. 1987;92(2):479-85. At http://www.ncbi.nlm.nih.gov/sites/entrez
  86. Kokkonen J, Similä S, Herva R. Impaired gastric function in children with cow’s milk intolerance European Journal of Pediatrics. 1979;132(1) At http://www.springerlink.com/content/j22587w6146h2008/
  87. Kokkonen J, Haapalahti M, Laurila K, Karttunen TJ, Mäki M. Cow’s milk protein-sensitive enteropathy at school age. J Pediatr. 2001;139(6):797-803 At http://www.ncbi.nlm.nih.gov/sites/entrez
  88. Kradjian RK. The milk letter: A message to my patients. http://www.notmilk.com/kradjian.html
  89. Lanou AJ, Berkow SE, Barnard ND. Calcium, Dairy Products, and Bone Health in Children and Young Adults: A Reevaluation of the Evidence PEDIATRICS Vol. 115 No. 3 March 2005, pp. 736-743 http://pediatrics.aappublications.org/cgi/content/full/115/3/736
  90. Lara-Villoslada, Olivares M, Xaus J. The Balance Between Caseins and Whey Proteins in Cow’s Milk Determines its Allergenicity. J. Dairy Sci. 2000;88:1654-1660 At http://jds.fass.org/cgi/content/full/88/5/1654
  91. Larsen HR. Milk and the Cancer Connection. Available at http://www.vvv.com/healthnews/milk.html
  92. Leite CQF et al. Isolation and identification of mycobacteria from livestock specimens and milk obtained in Brazil. Mem. Inst. Oswaldo Cruz 2003;98(3) At http://www.scielo.br/scielo.php
  93. Li D, Ganmaa D, Sato A. The Experience of Japan as a Clue to the Etiology of Breast and Ovarian Cancers: Relationship between Death from Both Malignancies and Dietary Practices. Medical Hypotheses 2003;60:268-75. Available at http://www.eps1.comlink.ne.jp/~mayus/lifestyle2/JapanExpBO.html
  94. Lifschitz C, Hawkins HK, Guerra C, Byrd N. Anaphylactic shock due to cow’s milk protein hypersensitivity in a breast-fed infant. J-Pediatr-Gastroenterol-Nutr. 1988;7(1):141-4 At http://grande.nal.usda.gov/ibids/index.php
  95. Lorenz M et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219-23. Epub 2007 Jan 9. At http://eurheartj.oxfordjournals.org/cgi/content/abstract/ehl442v1
  96. Lothe L, Lindberg T. Cow’s Milk Whey Protein Elicits Symptoms of Infantile Colic in Colicky Formula-Fed Infants: A Double-Blind Crossover Study. Pediatrics 1989;83(2):262-266 At http://pediatrics.aappublications.org/cgi/content/abstract/83/2/262
  97. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C. Breast milk and subsequent intelligence quotient in children born preterm. Lancet. 1992;339(8788):261-4
  98. Mantzoros CS. The Role of Leptin in Human Obesity and Disease: A Review of Current Evidence. At http://www.annals.org/cgi/reprint/130/8/671.pdf
  99. Masatoshi Matsumoto et al. Consumption of Dairy Products and Cancer Risks J Epidemiol 2007;17:38-44. At http://www.jstage.jst.go.jp/article/jea/17/2/17_38/_article
  100. Mettlin C. Milk drinking, other beverage habits, and lung cancer risk. Int J Cancer. 1989;43(4):608-12. At http://grande.nal.usda.gov/ibids/index.php?mode2=detail&origin=ibids_references&therow=268628
  101. Mettlin CJ. Invited commentary: progress in the nutritional epidemiology of ovary cancer. Am J Epidemiol. 1991;134(5):457-9; discussion 460-1 At http://www.ncbi.nlm.nih.gov/sites/entrez
  102. Miller VM et al. Evidence of nanobacterial-like structures in calcified human arteries and cardiac valves. Am J Physiol Heart Circ Physiol 2004;287:H1115-H1124 At http://ajpheart.physiology.org/cgi/content/full/287/3/H1115
  103. Milk Causes Cancer Too At http://www.13.waisays.com/cancer2.htm
  104. Milk Protein At http://www.milkfacts.info/Milk%20Composition/protein.htm
  105. Miralles O, Sánchez J, Palou A, Picó C. A Physiological Role of Breast Milk Leptin in Body Weight Control in Developing Infants. Obesity 2006;14:1371-1377 At http://www.obesityresearch.org/cgi/content/full/14/8/1371
  106. Moissidis et al. Milk-induced pulmonary disease in infants (Heiner syndrome). Case Report. Pediatric Allergy & Immunology. 2005;16(6):545-552. At http://pt.wkhealth.com/pt/re/pall/abstract
  107. Morley R, Cole TJ, Powell R, Lucas A. Mother’s choice to provide breast milk and developmental outcome. Arch Dis Child. 1988;63(11):1382-5.
  108. Niec AM, Frankum B, Talley NJ. Are adverse food reactions linked to irritable bowel syndrome? The American Journal of Gastroenterology 1998;93(11):2184–2190. At http://www.blackwell-synergy.com/doi/abs/10.1111/j.1572-0241.1998.00531.x
  109. Nielsen RG, Bindslev-Jensen C, Kruse-Andersen S, Husby S. Severe gastroesophageal reflux disease and cow milk hypersensitivity in infants and children: disease association and evaluation of a new challenge procedure. Journal of Pediatric Gastroenterology and Nutrition 2004;39(4):383-391 At http://www.cababstractsplus.org/google/abstract.asp
  110. Okada T. Effect of cow milk consumption on longitudinal height gain in children. American Journal of Clinical Nutrition 2004;80(4):1088-1089 Available at http://www.ajcn.org/cgi/content/full/80/4/1088-a
  111. Onis MD. Acta Pædiatrica 2006;450:5-6 Available at http://www.who.int/childgrowth/standards/Foreword.pdf
  112. Oransky I. What’s in your milk? The hypothesis: Hormones and growth factors in dairy increase cancer risk. The Scientist 21;2(34) Available at http://www.the-scientist.com/article/home/43585/
  113. Oski FA. Is Bovine Milk a Health Hazard? Pediatrics 1985;75: 182-186. Abstract
  114. Palmer LF. The Dangers of Cow’s Milk. http://www.naturalchild.org/guest/linda_folden_palmer.html
  115. Pande TK et al. Primary lingual tuberculosis caused by M. bovis infection. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1995;80(2):172-174 At http://www.sciencedirect.com/science
  116. Pangborn RM, Bos KE, Stern JS. Dietary fat intake and taste responses to fat in milk by under-, normal, and overweight women. Appetite. 1985;6(1):25-40. At http://www.ncbi.nlm.nih.gov/sites/entrez
  117. Park SY, Murphy SP, Wilkens LR, Stram DO, Henderson BE, Kolonel N. Calcium, Vitamin D, and Dairy Product Intake and Prostate Cancer Risk: The Multiethnic Cohort Study American Journal of Epidemiology 2007 166(11):1259-1269. Available at http://aje.oxfordjournals.org/cgi/content/abstract/166/11/1259
  118. Park Y, Mitrou PN, Kipnis V, Hollenbeck A, Schatzkin A, Leitzmann MF. Calcium, Dairy Foods, and Risk of Incident and Fatal Prostate Cancer-The NIH-AARP Diet and Health Study. American Journal of Epidemiology 2007 166(11):1270-1279 Availabl eat http://aje.oxfordjournals.org/cgi/content/abstract/166/11/1270
  119. PCRM: Milk- America’s Health Problem. Available at http://www.preventcancer.com/consumers/general/milk.htm
  120. Pico´ C, Sa´nchez J, Oliver P, Miralles O, Ceresi E, Palou A. Role of leptin present in maternal milk in the control of energy balance during the post-natal period. Genes Nutr 2007;2:139–141 At http://www.springerlink.com/content/3609812807664303/fulltext.pdf
  121. Pittschieler K. Cow’s milk protein-induced colitis in the breast-fed infant J Pediatr Gastroenterol Nutr. 1990;10(4):548-9
  122. Qin LQ et al. Milk consumption is a risk factor for prostate cancer: meta-analysis of case-control studies. Nutr Cancer. 2004;48(1):22-7. At http://www.ncbi.nlm.nih.gov/sites/entrez
  123. Ram FSF. Cow’s milk protein avoidance and development of childhood wheeze in children with a family history of atopy. At http://www.medscape.com/viewarticle/486796
  124. Real Milk: Abstracts on the Effect of Pasteurization on the Nutritional Value of Milk. Available at http://www.realmilk.com/abstractsmilk.html
  125. Rees L. Healthy digestion in infants. SA Pharmacist’s Assistant, July / august 2005. Available at http://www.sapajournal.co.za/index.php/SAPA/article/viewFile/31/26
  126. Rich-Edwards JW, Ganmaa D, Pollak MN et al. Milk consumption and the prepubertal somatotropic axis. Nutrition Journal 2007;6:28 Available at http://www.nutritionj.com/content/6/1/28
  127. Rollinger M. History of milk At http://www.eps1.comlink.ne.jp/~mayus/eng/MariaEng.pdf
  128. Rose DP, Boyar AP, Wynder EL. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer. 1986;58(11):2363-71. At http://www.ncbi.nlm.nih.gov/sites/entrez
  129. Rytkönen J. Effect of heat denaturation of bovine milk beta-lactoglobulin on its epithelial transport and allergenicity. Acta Univ. Oul. D 883, 2006. AvAilable at http://herkules.oulu.fi/isbn9514281209/isbn9514281209.pdf
  130. http://www.saanendoah.com/compare.html
  131. Salimei E, Varisco G, Rosi F. Major constituents, leptin, and non-protein nitrogen compounds in mares’ colostrum and milk Reprod. Nutr. Dev. 2002;42:65–72 65 At http://rnd.edpsciences.org/index.php?option=article&access=standard&Itemid=129&url=/articles/rnd/pdf/2002/02/Salimei.pdf
  132. Salvatore S, Vandenplas Y. Gastroesophageal reflux and cow milk allergy: is there a link? Pediatrics. 2002;110(5):972-84. At http://pediatrics.aappublications.org/cgi/content/full/110/5/972
  133. Samuelsson SM, Ekbom A, Zack M, Helmick CG, Adami HO. Risk factors for extensive ulcerative colitis and ulcerative proctitis: a population based case-control study. Gut. 1991;32(12):1526–1530. At http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1379255&blobtype=pdf
  134. Sato A, Ganmaa D. Hormonal effects of cows’ milk on human health. Available at http://www.eps1.comlink.ne.jp/~mayus/eng/Bostonmilk.pdf
  135. Savilahti E, Saukkonen TT, Virtala ET, Tuomilehto J, Akerblom HK. Increased levels of cow’s milk and beta-lactoglobulin antibodies in young children with newly diagnosed IDDM. The Childhood Diabetes in Finland Study Group Diabetes Care 1993;16(7):984-989 At http://care.diabetesjournals.org/cgi/content/abstract/16/7/984
  136. Savilahti E, Akerblom HK, Tainio VM, Koskimies S. Children with newly diagnosed insulin dependent diabetes mellitus have increased levels of cow’s milk antibodies. Diabetes Res. 1988;7(3):137-40.
  137. Schrezenmeir J, Jagla A. Milk and Diabetes Journal of the American College of Nutrition 2000;19(90002):176S-190S. At http://www.jacn.org/cgi/content/full/19/suppl_2/176S
  138. Scott FW. Cow milk and insulin-dependent diabetes mellitus: is there a relationship? American Journal of Clinical Nutrition 1990;51:489-491 At http://www.ajcn.org/cgi/reprint/51/3/489
  139. Sigurdson AJ, Chang S, Annegers JF, et al. A case-control study of diet and testicular carcinoma. Nutr Cancer 1999;34:20–6.[Medline]
  140. Stang A, Ahrens W, Baumgardt-Elms C et al. Adolescent Milk Fat and Galactose Consumption and Testicular Germ Cell Cancer Cancer Epidemiology Biomarkers & Prevention 2006;15:2189-2195. Available at http://cebp.aacrjournals.org/cgi/content/full/15/11/2189#TBL4
  141. Stengler M. Cow’s Milk–A Cautionary Tale Available At http://www.alive.com/1855a5a2.php?subject_bread_cramb=455
  142. Steppan CM, Swick AG. A Role for Leptin in Brain Development. Biochemical and Biophysical Research Communications 1999;256(3):600-602. At http://www.sciencedirect.com/science
  143. Stewart A. Hormones in Milk Are Linked to Cancer. March 2004. Available at http://www.consumerhealthjournal.com/articles/milk-and-cancer.html
  144. Studies Find Milk Consumption, Use of HRT, and Pregnancy May Influence Hormone Levels Associated With Cancer Risk in Women. Available at http://www.hms.harvard.edu/news/pressreleases/bwh/0902milkconsumption.html
  145. Summary-The Early Feeds: Human Milk Versus Formula and Bovine Milk. Pediatrics 1985;75:157-159. Available at http://pediatrics.aappublications.org/cgi/gca
  146. Tacket CO et al. A multistate outbreak of infections caused by Yersinia enterocolitica transmitted by pasteurized milk. JAMA 1984;251(4):483 At http://jama.ama-assn.org/cgi/content/abstract/251/4/483
  147. Tailford KA, Berry CL, Thomas AC, Campbel JH. A casein variant in cow’s milk is atherogenic. Atherosclerosis 2003;170(1):13-19. Abstract
  148. Taylor KB, Truelove SC. Circulating antibodies to milk proteins in ulcerative colitis. Br Med J. 1961;2(5257):924–929. At http://www.pubmedcentral.nih.gov/pagerender.fcgi?artid=1969927&pageindex=1
  149. Truelove SC. Ulcerative Colitis Provoked by Milk. Br Med J. 1961;1(5220):154–160. At http://www.pubmedcentral.nih.gov/pagerender.fcgi
  150. Uauy R, Peirano P. Breast is best: human milk is the optimal food for brain development. American Journal of Clinical Nutrition 1999;70(4):433-434 At http://www.ajcn.org/cgi/content/full/70/4/433
  151. Ursin G, Bjelke E, Heuch I, Vollset SE. Milk consumption and cancer incidence: a Norwegian prospective study. Br J Cancer. 1990;61(3):454-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  152. Vernia P, Di Camillo M, Marinaro V. Lactose malabsorption, irritable bowel syndrome and self-reported milk intolerance. Dig Liver Dis. 2001;33(3):234-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  153. Vernia P et al. Self-reported milk intolerance in irritable bowel syndrome: what should we believe? Clinical Nutrition 2004;23(5):996-1000. At http://www.sciencedirect.com/science
  154. Vernia P, Ricciardi MR, Frandina C, Bilotta T, Frieri G. Lactose malabsorption and irritable bowel syndrome. Effect of a long-term lactose-free diet. Ital J Gastroenterol. 1995;27(3):117-21. At http://www.ncbi.nlm.nih.gov/sites/entrez
  155. Virtanen SM et al. Diet, cow’s milk protein antibodies and the risk of IDDM in Finnish children. Diabetologia. 1994;37(4) At http://www.springerlink.com/content/u1n2065465162043/
  156. Vitoria JC et al. Cow’s milk protein-sensitive enteropathy. Clinical and histological results of the cow’s milk provocation test. Helv Paediatr Acta. 1979;34(4):309-18 At http://www.ncbi.nlm.nih.gov/sites/entrez
  157. Ward MH et al. Dietary factors and non-Hodgkin’s lymphoma in Nebraska (United States). Cancer Causes Control. 1994;5(5):422-32. At http://www.ncbi.nlm.nih.gov/sites/entrez
  158. Wasmuth HE, Kolb H. Cow’s milk and immune-mediated diabetes. Proc Nutr Soc. 2000 Nov;59(4):573-9. At http://www.ncbi.nlm.nih.gov/sites/entrez
  159. Weinsier RL, Krumdieck CL. Dairy foods and bone health: examination of the evidence American Journal of Clinical Nutrition 2000;72(3):681-689. Available at http://www.ajcn.org/cgi/content/full/72/3/681
  160. WHO At http://who.int/topics/breastfeeding/en/
  161. WHO revises outdated baby growth charts At http://www.ctv.ca/servlet/ArticleNews/story/
  162. Wiley AS. Does Milk Make Children Grow? Relationships Between Milk Consumption and Height in NHANES 1999–2002. Am J Hum Biol 2005;17:425–441. Available at http://people.jmu.edu/wileyas/website%20materials/DoesMilkMakeChildrenGrow.pdf
  163. Willetts IE, Dalzell M, Puntis JW, Stringer MD. Cow’s milk enteropathy: surgical pitfalls. J Pediatr Surg. 1999;34(10):1486-8 At http://www.ncbi.nlm.nih.gov/sites/entrez
  164. Woo J, Lau W, Xu L et al. Milk Supplementation and Bone Health in Young Adult Chinese Women. Journal of Women’s Health. June 1, 2007, 16(5): 692-702 Available at http://www.liebertonline.com/doi/abs/10.1089/jwh.2006.0222
  165. Woo SB, Sonis ST. Recurrent aphthous ulcers: A review of diagnosis and treatment JADA 1996;127:1202 At http://jada.ada.org/cgi/reprint/127/8/1202
  166. Xiang M et al. Long-chain polyunsaturated fatty acids in human milk and brain growth during early infancy. Acta Paediatrica 2000;89(2):142–147. Available at http://www.blackwell-synergy.com/doi/abs/10.1111/j.1651-2227.2000.tb01206.x
  167. Zbigniew Kwias et al. Effect of environment on the development of nephrolithiasis. Urologia Polska 1979;32(4) At http://www.urologiapolska.pl/artykul.php?305&lang=en&print=1
  168. Zheng T. Diet and Nutrient Intakes and Risk of Non-Hodgkin’s Lymphoma in Connecticut Women Am J Epidemiol 2004;159:454-466. At http://aje.oxfordjournals.org/cgi/content/full/159/5/454